在之前介绍过决策树的ID3算法实现,今天主要来介绍决策树的另一种实现,即CART算法。
Contents
1. CART算法的认识
2. CART算法的原理
3. CART算法的实现
1. CART算法的认识
Classification And Regression Tree,即分类回归树算法,简称CART算法,它是决策树的一种实现,通
常决策树主要有三种实现,分别是ID3算法,CART算法和C4.5算法。
CART算法是一种二分递归分割技术,把当前样本划分为两个子样本,使得生成的每个非叶子结点都有两个分支,
因此CART算法生成的决策树是结构简洁的二叉树。由于CART算法构成的是一个二叉树,它在每一步的决策时只能
是“是”或者“否”,即使一个feature有多个取值,也是把数据分为两部分。在CART算法中主要分为两个步骤
(1)将样本递归划分进行建树过程
(2)用验证数据进行剪枝
2. CART算法的原理
上面说到了CART算法分为两个过程,其中第一个过程进行递归建立二叉树,那么它是如何进行划分的 ?
设
代表单个样本的
个属性,
表示所属类别。CART算法通过递归的方式将

本文介绍了CART算法,一种用于构建决策树的二分递归分割技术。CART生成简洁的二叉树,通过递归划分和验证数据剪枝过程。在构建过程中,CART使用Gini不纯度作为划分标准,并在每个节点选择最佳划分。文章还提供了简单的示例和MATLAB代码实现。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



