#include<stdio.h>
#include<math.h>
#include<map>
#include<iostream>
#include<string.h>
using namespace std;
const double eps=1e-6;
map<long long,int>mp;
struct Node
{
    int x,y;
}node[50];
double dis(Node a,Node b)
{
    return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
void solve(Node a,Node b,Node c)
{
    double la=dis(b,c);
    double lb=dis(a,c);
    double lc=dis(a,b);
    if(la+lb<=lc+eps)return;
    if(lb+lc<=la+eps)return;
    if(la+lc<=lb+eps)return;
    double A=acos((lb*lb+lc*lc-la*la)/(2*lb*lc));
    double B=acos((la*la+lc*lc-lb*lb)/(2*la*lc));
    double C=acos((la*la+lb*lb-lc*lc)/(2*la*lb));
    if(A<eps||B<eps||C<eps)return;
    int t1=(int)(A*10000);
    int t2=(int)(B*10000);
    int t3=(int)(C*10000);
    if(t1>t2)swap(t1,t2);
    if(t1>t3)swap(t1,t3);
    if(t2>t3)swap(t2,t3);
    if(t1==0)return;
    long long t=t1*1000000*1000000+t2*1000000+t3;
    mp[t]++;
}
int hole[220][220];
int main ()
{
    int n;
    while(scanf("%d",&n),n)
    {
        int t=0;
        memset(hole,0,sizeof(hole));
        for(int i=0;i<n;i++)
        {
            scanf("%d%d",&node[t].x,&node[t].y);
            if(hole[node[t].x+100][node[t].y+100]==0)
            {
                hole[node[t].x+100][node[t].y+100]=1;
                t++;
            }
        }
        n=t;
        mp.clear();
        for(int i=0;i<n;i++)
          for(int j=i+1;j<n;j++)
            for(int k=j+1;k<n;k++)
              solve(node[i],node[j],node[k]);
        int ans=0;
        map<long long,int>::iterator it;
        for(it=mp.begin();it!=mp.end();it++)
        {
            int t=it->second;
            if(t>ans)ans=t;
        }
        printf("%d\n",ans);
    }
    return 0;
}
  
 
                   
                   
                   
                   
                             本文介绍了一个计算平面上三个点构成的三角形面积的程序。通过使用C++实现,该程序能够读取一系列点坐标,并计算由任意三点组成的有效三角形的最大数量。涉及的主要步骤包括计算两点之间的距离、利用余弦定理判断是否构成有效三角形及统计出现频率。
本文介绍了一个计算平面上三个点构成的三角形面积的程序。通过使用C++实现,该程序能够读取一系列点坐标,并计算由任意三点组成的有效三角形的最大数量。涉及的主要步骤包括计算两点之间的距离、利用余弦定理判断是否构成有效三角形及统计出现频率。
           
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   1463
					1463
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            