2017年智能语音应用专题分析

定义:什么是智能语音?

智能语音是人工智能技术的重要组成部分,包括语音识别、语义理解、自然语言处理、语音交互等。

范畴:研究对象是什么?

  • 研究对象为智能语音技术在智能家居、智能车载和智能可穿戴设备的应用。

关键字:人工智能、物联网、智能语音、智能家居、车载、智能可穿戴


四个维度分析

一、智能语音取的重大突破,商业化落地成为可能


1

智能语音技术是人工智能产业链上的关键一环,可从行业应用技术研究及服务基础设施三个层次来看:

  1. 行业应用:智能家居、可穿戴设备、机器人、虚拟助理、智能安防、智慧金融、智慧教育、智能医疗、无人驾驶/机、娱乐/营销、客服/呼叫中心

  2. 技术研究及服务:计算机视觉、语音技术/自然语言处理、人机交互、深度学习/机器学习

  3. 基础设施:传感器、芯片、云计算服务、操作系统、数据服务平台、网络运营商

中国人工智能市场规模持续增长,智能语音将居于重要地位:2018年中国人工智能市场规模预计将达200亿元,2017年中国语音产业规模预计将突破百亿。


2

随着语音技术如深度学习、高性能计算和大数据的逐渐成熟,使得智能语音技术从实验室走向工业界,商业化应用成为可能。

其中,2016来年谷歌的语音识别准确率突破90%,百度/科大讯飞中文语音识别率达到97%。


3

商业场景落地的重要环节语音交互有了重大突破:

  • 语音识别:

    • 识别率:主流厂商的中文识别准确率达到97%
    • 冷唤醒:3-5m远场识别性能提升
    • 远场降噪:麦克风阵列进一步提升识别性能
  • 语义理解:

    • 多轮对话:上下文可随时打断,加入预警分析功能
  • 自然语言生成:国内一线厂家机器翻译能力已经到达国际领先水平

  • 语音合成:国内一流厂商的中英文语音合成功能已超过普通人水平

二、智能车载、智能家居及可穿戴设备风潮的兴起加速语音技术落地

  • 智能语音市场整体处于启动期,智能车载、智能家居、智能可穿戴设备等垂直领域处于爆发前夜。

  • 智能车载市场前景广阔,预计五年内车联网渗透率超过50%,语音将成为车载系统标配。


    4

  • 智能家电渗透率提高,智能家居市场蕴含千亿市场规模,语音作为家居交互入口将大有所为。


    5

  • 可穿戴设备市场规模潜力巨大,VR/AR、智能手表等兴起,语音将成为天然交互入口。


    这里写图片描述

    • 智能硬件趋于小屏化、无屏化,可穿戴设备的特点决定语音将成为其天然交互入口。

三、科技巨头、初创公司纷纷从不同维度布局相关产业链

国外科技巨头:通过并购等手段,夯实核心技术,开放应用平台,在既有的产品和业务中实现AI first,拓展以AI为核心的生态系统。


这里写图片描述

  • 谷歌:延续既有开放模式,打造开发者生态链,推出Google Home,试图建立物联网时代安卓系统。


    这里写图片描述

  • 苹果:基于智能硬件定标准、做平台、获数据,重视物联网时代生态控制权。


    这里写图片描述

国内互联网巨头:开放语音生态系统,以产业内合作的方式,将语音植入技术产品或应用于相关业务场景,构建全产业生态链。


这里写图片描述

百度:瞄准人工智能战场,对外开放语音生态系统,对内在自身产品业务中实现AI first。


这里写图片描述

国内智能语音公司:依托原有优势,从单一智能语音技术商转型全方位人工智能技术服务商。


这里写图片描述

  • 科大讯飞:传统优势明显,未来将更注重通用人工智能技术和平台级业务的拓展。

    这里写图片描述

初创厂商:以垂直领域和细分场景为突破口,重点布局家居、车载和可穿戴设备。


这里写图片描述

  • 图灵机器人:定位于语义和认知计算的平台服务提供商,提供聊天机器人平台和机器人操作系统。

    这里写图片描述

商业化路径:从智能手机语音助理类产品拓展到服务机器人领域,联手内容厂商,打造“AI+IP”战略。

产品布局:以人工智能为基础,横向切入智能家居、儿童机器人、智能客服和虚拟机器人等应用场景。

  • 思必驰:专注垂直领域智能硬件的语音交互解决方案。

    这里写图片描述

商业化路径:软硬一体化解决方案,产品线纵深整合,拓展2B业务合作。

产品布局:专注2B领域的智能硬件语音交互,聚焦车载、家居和机器人,开放生态合作。

  • 云知声:聚焦物联网,构建“云端芯”产品战略

    这里写图片描述

商业化路径:从技术到产品,软硬结合,走B2B2C路线

产品布局:“云端芯”战略,重点布局家居、车载、医疗领域

  • 出门问问:以可穿戴设备为切入点,走以AI为中心的软硬结合路线

    这里写图片描述

商业化路径:面向C端,从软到硬,纵深产品深度集成,横向品类打通

产品布局:以智能手表为切入点,将AI应用场景逐步向车载、家居等领域拓展,以实现物联网多屏移动。

四、面向物联网的智能语音产业链的形成将引起商业模式的变化

未来趋势:以语音为入口,建立物联网为基础的商业模式。


这里写图片描述

  • 智能家居:以合适的入口级应用为载体,基于万物互联的标准,将技术与硬件结合,实现内容和服务的拓展。


    这里写图片描述

  • 智能车载:车联网向纵深方向发展,硬件基础功能免费,基于用户数据的挖掘和增值服务将成为未来的主要赢利点。


    这里写图片描述

  • 智能可穿戴:从单一售卖硬件获得现金流,到后续通过内容和服务获得持续现金流的模式。


    这里写图片描述


整合于199IT 中文互联网数据咨询中心

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
实用语音识别基础--21世纪高等院校技术优秀教材 ISBN:711803746 作者:王炳锡 屈丹 彭煊 出版社:国防工业出版社 本书从语音识别的基本理论出发,以“从理论到实用”为主线,讲解了国际上最新、最前沿的语音识别领域的关键技术,从语料库建立、语音信号预处理、特征提取、特征变换、模型建立等方面详细介绍了语音识别系统建立的过程,并针对语音识别系统实用化的问题,给出了一些改善语音识别系统性能的关键技术,力求语音识别能走出实验室,向实用发展。   全书共分四个部分(17章),第一部分介绍语音识别的基本理论;第二部分介绍实用语音识别系统建立的过程;第三部分列举了语音识别系统工程化所需的关键技术;第四部分对语音识别的4个主要应用领域进行了详尽的、深入浅出的讲解,并根据最新的研究与实验结果提供了大量的实际参数、图表,与实际工作联系紧密,具有很强的可操作性与实用性。章节之间紧密配合、前后呼应,具有很强酶系统性。同时,通过书中的研究过程和研究方法,读者能够在以后的研究工作中得到很大的启发。   本书可作为高等院校理工科通信和信息处理及相关专业的高年级本科生和(硕士、博士)研究生的教材或参考书,也可供从事信息处理、通信工程等专业的研究人员参考。   目录:   第1章 绪论   1. 1 概述   1. 2 语音识别综述   1. 3 国内外语音识别的研究现状和发展趋势   参考文献   第一部分 基本理论   第2章 听觉机理和汉语语音基础   2. 1 概述   2. 2 听觉机理和心理   2. 2. 1 语音听觉器官的生理结构   2. 2. 2 语音听觉的心理   2. 3 发音的生理机构与过程   2. 4 汉语语音基本特性   2. 4. 1 元音和辅音   2. 4. 2 声母和韵母   2. 4. 3 音调 字调   2. 4. 4 音节 字 构成   2. 4. 5 汉语的波形特征   2. 4. 6 音的频谱特性   2. 4. 7 辅音的频谱特性   2. 4. 8 汉语语音的韵律特征   2. 5 小结   参考文献   第3章 语音信号处理方法--时域处理   3. 1 概述   3. 2 语音信号的数字化和预处理   3. 2. 1 语音信号的数字化   3. 2. 2 语音信号的预处理   3. 3 短时平均能量和短时平均幅度   3. 3. 1 短时平均能量   3. 3. 2 短时平均幅度   3. 4 短时过零分析   3. 4. 1 短时平均过零率   3. 4. 2 短时上升过零间隔   3. 5 短时自相关函数和平均幅度差函数   3. 5. 1 短时自相关函数   3. 5. 2 短时平均幅度差函数   3. 6 高阶统计量   3. 6. 1 单个随机变量情况   3. 6. 2 多个随机变量及随机过程情况   3. 6. 3 高斯过程的高阶累积量   3. 7 小结   参考文献   第4章 语音信号处理方法--时频处理   4. 1 概述   4. 2 短时傅里叶变换   4. 2. 1 短时傅里叶变换的定义和物理意义   4. 2. 2 基于短时傅里叶变换的语谱图及其时频分辨率   4. 2. 3 短时傅里叶谱的采样   4. 3 小波变换   4. 3. 1 连续小波变换   4. 3. 2 二进小波变换   4. 3. 3 离散小波变换   4. 3. 4 多分辨分析   4. 3. 5 正交小波包   4. 4 Wigner分布   4. 4. 1 Wigner分布的定义   4. 4. 2 Wigner分布的一般性质   4. 4. 3 两个信号和妁Wigner分布   4. 4. 4 Wigner分布的重建   4. 4. 5 Wigner分布的实现   4. 5 小结   参考文献   第5章 语音信号处理方法--倒谱同态处理   5. 1 概述   5. 2 复倒谱和倒谱   5. 2. 1 定义   5. 2. 2 复倒谱的性质   5. 3 语音信号的倒谱分析与同态解卷积   5. 3. 1 叠加原理和广义叠加原理   5. 3. 2 同态解卷特征系统和同态解卷反特征系统   5. 3. 3 同态解卷系统   5. 3. 4 语音的复倒谱及同态解卷   5. 4 避免相位卷绕的算法   5. 4. 1 最小相位信号法   5. 4. 2 递归法   5. 5 小结   参考文献   第二部分 语音识别系统   第6章 语料库   6. 1 概述   6. 2 语料库的基本特征   6. 3 语料库的类型   6. 4 语音语料库   6. 4. 1 语音语料库建立. 收集和标注的意义   6. 4. 2 语音语料库的建立和收集要点   6. 4. 3 标准语音语音特性描述   6. 5 语料库的设计举例--863汉语普通话语音合成语料库的设计   6. 5. 1 语料库设计原则   6. 5. 2 语音库的标注   6. 5. 3 与语音语料库相关的文字语料库标注   6. 6 小结   参考文献   第7章 语音识别的预处理   7. 1 概述   7. 2 语音识别单元的选取   7. 2. 1 汉语音节   7. 2. 2 汉语的基本音素   7. 2. 3 汉语半音节   7. 3 自动分段--端点检测技术   7. 3. 1 基于能量的端点检测   7. 3. 2 基于LPC-10声码器的端点检测   7. 3. 3 基于信息熵的语音端点检测   7. 3. 4 基于频带方差的端点检测   7. 3. 5 基于倒谱特征的带噪语音信号端点检测   7. 3. 6 基于HMM的端点检测方法   7. 3. 7 基于分形技术的端点检测   7, 3. 8 基于自相关相似距离的端点检测   7. 3. 9 基于迟滞编码的端点检测   7. 3. 10 实时端点检测算法   7. 4 小结   参考文献   第8章 语音信号特征参数   8. 1 概述   8. 2 基音周期   8. 2. 1 自相关法及其改进   8. 2. 2 并行处理法   8. 2. 3 倒谱法   8. 2. 4 简化逆滤波法   8. 3 线性预测参数   8. 3. 1 线性预测信号模型   8. 3. 2 线性预测误差滤波   8. 3. 3 语音信号的线性预测分析   8. 3. 4 线性预测分析的解法   8. 3. 5 斜格法及其改进   8. 4 线谱对 LSP 参数   8. 4. 1 线谱对分析原理   8. 4. 2 线谱对分析的求解   8. 5 LPCC参数   8. 6 mfcc参数   8. 7 ASCC参数   8. 8 感觉加权的线性预测 PLP 特征   8. 8. 1 PLP参数   8. 8. 2 RASTA-PLP参数   8. 9 动态差分参数   8. 10 高阶信号谱类特征   8. 10. 1 WV谱的定义及其主要性质   8. 10. 2 WV谱计算式的一些变形   8. 11 小结   参考文献   第9章 特征变换   9. 1 概述   9. 2 线性判别分析 LDA   9. 2. 1 线性判别分析的概念   9. 2. 2 广义线性判别函数   9. 2. 3 Fisher线性判别   9. 2. 4 多类问题   9. 3 主分量分析 PCA   9. 3. 1 基于K-L变换的主分量分析   9. 3. 2 随机向量的K-L展开   9. 3. 3 基于K-L变换的降维   9. 4 独立分量分析 ICA   9. 4. 1 引言   9. 4. 2 线性独立分量分析   9. 4. 3 线性独立分量分析算法   9. 4. 4 独立分量分析的预处理   9. 4. 5 非线性独立分量分析   9. 5 小结   参考文献   第10章 语音识别的模型   10. 1 概述   10. 2 动态时间规整 DTW   10. 2. 1 动态规划技术 DP   10. 2. 2 DTW算法的改进   10. 3 隐马尔可夫模型 HMM   10. 3. 1 隐马尔可夫模型的定义   10. 3. 2 HMM中的3个基本问题及其解决方案   10. 3. 3 隐马尔可夫模型的类型   10. 3. 4 HMM算法实现的问题   10. 4 分类模型 SVM   10. 4. 1 引言   10. 4. 2 学习问题   10. 4. 3 学习过程一致性的条件   10. 4. 4 学习过程收敛速度的界   10. 4. 5 结构风险最小归纳原理   10. 4. 6 支持向量机   10. 5 人工神经网络   10. 5. 1 引言   10. 5. 2 神经元的基本模型   10. 5. 3 前向网络   10. 5. 4 反馈网络   10. 6 高斯混合模型 GMM   10. 6. 1 高斯混合模型的定义   10. 6. 2 参数调整算法--em算法   10. 7 小结   参考文献   第三部分 语音识别中关键处理技术   第11章 说话人自适应和说话人归一化技术   11. 1 概述   11. 2 自适应方式的分类   11. 3 MLLR算法介绍   11. 3. 1 语音特征空间的划分   11. 3. 2 参数的估计   11. 3. 3 对均值矢量的变换   11. 4 MAP算法介绍   11. 4. 1 MAP算法准则   11. 4. 2 MAP算法公式推导   11. 4. 3 MAP算法讨论   11. 5 说话人归一化技术   11. 5. 1 说话人归一化技术原理   11. 5. 2 声道长度归一化 VTLN   11. 6 小结   参考文献   第12章 噪声抑制   12. 1 概述   12. 2 基于小波变换的噪声抑制   12. 2. 1 利用小波变换去除周期性噪声   12. 2. 2 利用小波变换去除冲激噪声   12. 2. 3 利用小波变换去除宽带噪声   12. 2. 4 小波去噪方法的分析   12. 3 基于EVRC编码的噪声抑制   12. 4 基于HMM模型的噪声补偿   12. 5 小结   参考文献   第13章 信道补偿   13. 1 概述   13. 2 稳健语音识别技术   13. 2. 1 稳健语音识别的提出   13. 2. 2 稳健语音识别的研究现状   13. 3 信道补偿技术的主要方法   13. 3. 1 经验补偿技术   13. 3. 2 盲补偿   13. 3. 3 基于特征及模型的补偿   13. 4 信道补偿技术在语音识别中的应用   13. 4. 1 信道补偿技术在汽车内语音识别中的应用   13. 4. 2 基于信道补偿的电话语音识别   13. 5 小结   参考文献   第四部分语音识别应用   第14章 说话人识别   14. 1 概述   14. 2 说话人识别的基本原理   14. 2. 1 说话人识别系统的典型结构   14. 2. 2 技术原理   14. 3 说话人识别的特征选择   14. 3. 1 说话人识别系统中常用的特征   14. 3. 2 特征参数的统计评价   14. 4 说话人识别的主要方法   14. 4. 1 模板匹配法   14. 4. 2 概率统计方法   14. 4. 3 辨别分类器方法   14. 4. 4. 混合方法   14. 5 判决规则与性能评价标准   14. 5. 1 说话人辨认   14. 5. 2 说话人确认 检测   14. 6 说话人识别中的稳健技术   14. 7 系统举例   14. 7. 1 GMM说话人辨认算法   14. 7. 2 SVM-GMM混合模型   14. 7. 3 CMM-UBM说话人确认   14. 8 小结   参考文献   第15章 关键词识别   15. 1 概述   15. 2 关键词识别及其与连续语音识别的关系   15. 3 关键词识别原理   15. 3. 1 关键词识别系统组成   15. 3. 2 关键词识别的基本问题   15. 3. 3 关键词识别系统的主要技术难点   15. 4 搜索策略   15. 4. 1 语音起始和结束点的粗判   15. 4. 2 帧同步的Viterbi解码算法   15. 4. 3 加入驻留惩罚的改进Viterbi解码算法   15. 4. 4 语法节点处的路径合并   15. 4. 5 回溯   15. 5 识别结果的确认   15. 5. 1 置信度的原理   15. 5. 2 利用反词模型的拒识方法   15. 5. 3 利用识别结果本身信息的拒识方法   15. 6 系统实现   15. 6. 1 训练和识别系统框图   15. 6. 2 训练系统的具体实现   15. 6. 3 识别系统的具体实现   15. 7 小结   参考文献   第16章 语言辨识   16. 1 概述   16. 1. 1 语言辨识的原理   16. 1. 2 语言辨识技术研究发展的历史   16. 2 语言辨识所需要的有用信息   16. 3 针对自动语言辨识的知觉研究   16. 4 语言辨识的主要方法   16. 4. 1 频谱相似性方法   16. 4. 2 基于韵律信息的方法   16. 4. 3 基于音素识别的方法   16. 4. 4 基于多语言语音单元的方法   16. 4. 5 单词层次方法   16. 4. 6 基于连续语音识别的方法   16. 4. 7 元音系统模型   16. 5 语言辨识系统举例   16. 5. 1 基于GMM-UBM模型的语言辨识系统   16. 5. 2 基于最小分类误差准则的语言辨识系统   16. 5. 3 基于说话人聚类和高斯混合模型的语言辨识系统   16. 5. 4 基于时频主分量分析和高斯混合模型的语言辨识系统   16. 5. 5 基于高斯混合二元模型的语言辨识系统   16. 6 语言辨识系统评估   16. 7 小结   参考文献   第17章 连续语音识别   17. 1 概述   17. 2 连续语音识别整体模型   17. 3 声学模型   17. 3. 1 语音识别单元的选取   17. 3. 2 基于予词单元HMM的训练   17. 4 连续语音识别中的搜索策略   17. 4. 1 传统的帧同步算法   17. 4. 2 基于统计知识的帧同步搜索算法原理   17. 4. 3 受词法约束的词搜索树   17. 4. 4 连续语音识别中的双层搜索网络   17. 5 语言模型   17. 5. 1 基于规则的方法   17. 5. 2 基于统计的方法   17. 5. 3 N-gram模型的平滑   17. 5. 4 基于文法规则的方法和基于统计的方法相结合   17. 6 小结   参考文献   附录 英汉名词对照

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

斜杠老A

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值