牛客多校第八场I题 并查集

本文探讨使用并查集解决一道竞赛题目,该题要求在一系列数对中选择最多不重复的数。文章详细介绍了如何通过离散化和并查集来构建解决方案,避免数对之间的冲突。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Interesting Computer Game
题意:给你n对数,然后每对数只能挑一个数,并且如果这个数在前面被挑过了,那么就不能被挑选,问最多能挑多少个数
思路:我一开始想到的是拓扑排序,毕竟之前正好刷过这样类似的几道题,然并软,我就是没有做出来。也有拓扑排序的解法,然而我并没有想出来。。待补
并查集
先说一下建图把,虽然说挺简单的,先对我们得到的数进行离散化,因为数有可能为1e9,这超出我们能开的数组的范围,而实际上题目最多能给我们2e5个不同的数,然后就是简单的建图了,每个数为一个节点,边即为每对出现就相连。
首先要知道这样一个性质,一条链一旦其中有一个环,包括自环,那么他所能选到的数一定是本身的节点个数,反之只能得到为其自身节点个数减一。

并查集代码如下

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cmath>
#include <queue>
#include <set>
#include <map>
#include <stack>
#include <unordered_map>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
#define rep(i, a, n) for(int i = a; i <= n; i++)
#define per(i, a, n) for(int i = n; i >= a; i--)
#define IOS std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#define fopen freopen("file.in","r",stdin);freopen("file.out","w",stdout);
#define fclose fclose(stdin);fclose(stdout);
#define PI 3.14159265358979323846
const int inf = 1e9;
const ll onf = 1e18;
const int maxn = 1e5+10;
inline int read(){
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
    return x*f;
}
int fa[maxn*2], a[maxn], b[maxn], c[maxn*2], vis[maxn*2];
int find(int x){
    return x==fa[x] ? x : fa[x]=find(fa[x]);
}
inline void cf(){
   int t = read();
    int z = 1;
    while (t--)
    {
        int n = read();
        for (int i = 0; i < n; i++)
        {
            a[i] = read(), b[i] = read();
            c[i] = a[i], c[i + n] = b[i];
        }
        sort(c, c + 2 * n);
        int ans = 0;
        int x = unique(c, c + 2 * n) - c;
        for (int i = 0; i < n; i++)
        {
            a[i] = lower_bound(c, c + x, a[i]) - c + 1;
            b[i] = lower_bound(c, c + x, b[i]) - c + 1;
        }
        for(int i = 1; i <= x; i++){
            fa[i]=i;vis[i] = 0;
        }
        for(int i = 0; i < n; i++){
            int r1=find(a[i]), r2=find(b[i]);
            if(r1!=r2){
                if(vis[r1]) vis[r2] = 1;	//如果r1某个环的头,那么就意味着r2也在这个环里面
                fa[r1] = r2;
            }else vis[r1] = 1;	//设r1为这个环的头
        }
        for(int i = 1; i <= x; i++){
            if(i==fa[i]&&vis[i]==0){	//当且仅当当前节点的父节点为自己,且不是环的开头的时候要进行减一的操作
                ans++;
            }
        }
        printf("Case #%d: %d\n",z++, x-ans);
    }
    return ;
}
signed main(){
    cf();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值