水手分椰子类型题简易通解公式及推导(完整版)

转自:http://blog.sina.com.cn/s/blog_a1494e1301013w7v.html

序:“水手分椰子”是趣味数学题”水手、猴子和椰子”的习惯简称,在中国被改为(五猴分桃)这是一个世界有名的趣味数学题,首先刊登在美国《星期六晚邮报》上,据说,最早是由偉大物理学家狄拉克提出来的,这一貌似简单的问题曾困扰住了他为了获得简便的計算方法,他把问题提供给当时的一些数学家,有意思的是,竟然也没有得到满意的结果,1979年,诺贝尔物理学奖获得者,李政道博士在”中国科技大学”讲学时,特地提到此题;自此以后,研究该题的简易计算方法,迅速风靡国内。
曾对“五水手分椰子”的广泛流传(主要是在国外), 起过重要作用的, 著名现代数理逻辑学家怀德海, 曾用高阶差分方程理论的通解和特解的关系, 对“水手分椰子”一题, 给出过一个答案为(-4)巧妙的解法。近十多年来, 在后来者的不断努力下,研究该问题的求解方法,也逐步的有了一些进展。但严格的来说:目前所取得的成果其本上还是局部的, 仅是限于“水手分椰子”(或五猴分桃)这一个具体题目,离全面彻底而又简捷地求解所有这种类型的题目,还有着较大的距离。
本人曾于1979年在月刊《中国青年》看到“五猴分桃”一题, 并通过用不定方程求得其解, 当时, 本人觉得就题论题意义己不大。同时在非常繁复的计算过程中, 隐隐略略觉得这种类型题好象能找到某种规律。于是通过五、六天的努力,  终于演算出所有这种类题型的完整、简捷的“通解公式”(即所有影响答案的因素都可任意取值)非常简易的求解。这就在很大的程度上增加了(也可以说是穷极了),求解"五猴分桃"类型题目的深度和广度(详见下面的计算公式和例题)。          
但是,由于当时自己在乡下, 息闭塞也没把这个“通解公式”很当一回事。一幌三十多年又过去了,近段时间, 因较空闲,经常上上网于是惊呀发现:寻找“五猴分桃”类型题的简易计算方法,竟是一个具有较深背景的,已讨论了二、三十年的热门话题;而且至今仍未找到完美解决办法。于是自己边回想、边演算,终于又重新推导出了五猴分桃”类型题的“通解公式”,现将其公开发表如下,与大家共同分享:
         “水手分椰子”类型题完整而又简易的通解公式:

         y=an-db/c

 

     y── 被分的某东西的总个数, 

     a── 每次分的总份数(一般情况下,是总人数), 

    n── 总共分的次数, 

    c── 分a份后拿走的份数,  

    b── 每次分a份后的余数, 

    d── 每次分a份拿走c份后剩下再分的份数,

    注;当b÷c不为自然数时,则此时此题无解也即y无解。(后面有证明)

    其推导过程如下:

    设,最后一个人看到的某物数是 ; ax+b  (x最后一次a份后每份的个数)

    那么,前一个人看到的某物数为   (xa+b)a/d+b= a2x/dba/db

    再前一个人看到的某物数为 (a2x/dab/db)a/db= a3x/d2b(a/d)2ba/db

    同样,再前一个人看到的某物数为:  a4x/d3b(a/d)3b(a/d)2ba/db 

    再前一个人看到的某物数为:y= a5x/d4(a/d)4(a/d)3(a/d)2(a/d)1]b,

    整理后得;  y= [xa5(a4da3d2a2d3ad4)b]/d4

    根据等比数例递推公式并加以整理后有:

    y={xan +[an-1(1-(d/a)n/(1-d/a)]b}/dn-1

    y={xan +an-1[1-(d/a)n]ba/c}/dn-1

    y={xan+[an-1-(an-1dn)/an]ad/c}/dn-1

    y=[xan+(an-dn)b/c]/dn-1

    y=(xan+anb/c-dnb/c)/dn-1

    y=(xan+anb/c)/dn-1-db/c

    y=an(x+b/c)/dn-1-db/c

    上式中的a[(a/d)^(n-1)]部分,若出现(a/d)有公约数时不得约分,否则a和d原有的定义就不存在了,同时也无法解题。故上式应进一步写成:

                               y=an[(x+b/c)/dn-1]-db/c

    从上式可看出:若b/c不为自然数时,则(x+b/c)/dn-1不为整数,  故下式通解公式此时也无解;若b/c为自然数,  则 (x+b/c)/dn-1 必可取得最小自然1, 1的任意倍数。通常在计算时一般取最小自然1, 则上述方程的演算和推导最后可写成下述简易通解公式:

                               y=an-db/c

    现在用上述公式来求解,本人在上月博客中12、15、16日所出的三道此种类型题目        

     例一,在《九猴分桃》中: a=9,    n=10,    b=8,    d=7,    c=2

     根据通解公式有: y=910次方-8×7÷2=3486784373 

     例二,《十六水手分椰子》中: a=16,    n=11,    b=12,    d=13,    c=3

     根据通解公式有: y=1611次方-12×13÷3=17592186044364 。                                       

例三,可得《二十三海盗分珠宝的解为: 

     y=2315次方-18×21÷2= 2315次方189=2666352354391245418

《五水手分椰子》中:因b=1, c=1 ,n=6, y=a^6d,(在此题里d=4)。

 由此也可看出:《五水手分椰子》也是这种类型题目中最简单的题目之一 

以上题目,大家可以根据上面公式,  对上述所出题目(或者按公式的定义, 自己随意出题)的答案逐题进行验证;同时你也自然能够出许许多多的比“水手分椰子”难得多的题目了。

阅读更多
换一批

没有更多推荐了,返回首页