# POJ 2299 Ultra-QuickSort（树状数组）

Ultra-QuickSort
 Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 47014 Accepted: 17182

Description

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,

Ultra-QuickSort produces the output
0 1 4 5 9 .

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

5
9
1
0
5
4
3
1
2
3
0


Sample Output

6
0


Source

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#define N 5000010
#define ll long long

using namespace std;

int n;
struct node {
int x;
int num;
} a[N];
int bit[N];

bool cmp_1(node a,node b) {
return a.x<b.x;
}

bool cmp_2(node a,node b) {
return a.num<b.num;
}

int sum(int i) {
int s=0;
while(i>0) {
s+=bit[i];
i-=i&-i;
}
return s;
}

while(i<=n) {
bit[i]+=x;
i+=i&-i;
}
}
int main() {
//freopen("test.in","r",stdin);
while(cin>>n&&n) {
for(int i=1; i<=n; i++) {
scanf("%d",&a[i].x);
a[i].num=i;
}
sort(a+1,a+n+1,cmp_1);
for(int i=1; i<=n; i++)//离散化
a[i].x=i;
sort(a+1,a+n+1,cmp_2);
memset(bit,0,sizeof bit);
ll ans=0;
for(int i=1; i<=n; i++) {
ans+=i-sum(a[i].x)-1;
}
printf("%lld\n",ans);
}
return 0;
}


#### Ultra-QuickSort POJ - 2299 （树状数组）

2017-02-22 21:29:48

#### poj 2299 Ultra-QuickSort 求逆序数，树状数组解法，详细解析

2015-02-05 20:55:37

#### POJ 2299 Ultra-QuickSort （树状数组）

2014-12-09 22:16:54

#### 树状数组例题（poj2299）

2016-08-06 22:07:08

#### POJ - 2299 Ultra-QuickSort解题报告

2017-02-17 10:12:43

#### E - Ultra-QuickSort POJ - 2299 线段树离线

2017-12-13 11:36:07

#### Ultra-QuickSort poj-2299

2017-02-02 13:07:09

#### 【 树状数组 】POJ 2299 Ultra-QuickSort

2018-03-05 23:06:52

#### POJ 2299 Ultra-QuickSort(树状数组)

2014-05-13 02:28:32

#### POJ 2299 Ultra-QuickSort (树状数组)

2017-12-25 17:13:23