White Beard


hdu 1081 To The Max(最大子矩阵)

To The Max

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10238    Accepted Submission(s): 4928

Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.

The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output the sum of the maximal sub-rectangle.

Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2

Sample Output


#define N 111
#define INF 1e8

using namespace std;

int sum[N][N];
int n;

int main() {
    while(~scanf("%d",&n)) {
        memset(sum,0,sizeof sum);
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++) {
                int x;
        int ans=-INF;
        for(int l=1; l<=n; l++) {
            for(int r=l; r<=n; r++) {
                int all=0;
                for(int i=1; i<=n; i++) {
    return 0;

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/acm_BaiHuzi/article/details/49897643
个人分类: DP
上一篇Java 实现栈(Stack)
下一篇hdu 1051 Wooden Sticks(贪心)
想对作者说点什么? 我来说一句