ZOJ 3662 Math Magic(12年长春 site H)

ACM_DP 专栏收录该内容
47 篇文章 3 订阅

转载请注明出处,谢谢http://blog.csdn.net/acm_cxlove/article/details/7854526       by---cxlove 

题目:给出K个数,使得这K个数的和为N,LCM为M,问有多少种

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4885 

就一裸DP啊,可惜比赛还是跪了好久

和ZOJ月赛某题类似

LCM为M,那么中间状态的LCM肯定为M的约数,而且加入的数也肯定是M的约数

dp[i][j][k]表示取了i个数,和为j,LCM为状态k的时候的种数

ZOJ卡得很紧,还需要预处理LCM

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MOD 1000000007
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
int N,M,K;
int cnt,num[1005],pos[1005];
int dp[2][1005][105];
int LCM[1005][1005];
int gcd(int a,int b)
{
    return b==0?a:gcd(b,a%b);
}
int lcm(int a,int b)
{
    return a/gcd(a,b)*b;
}
int main()
{
    for(int i=1;i<=1000;i++)
    {
        for(int j=1;j<=1000;j++)
        {
            LCM[i][j]=lcm(i,j);
        }
    }
    while(scanf("%d%d%d",&N,&M,&K)!=EOF)
    {
        cnt=0;
        mem(pos,-1);
        for(int i=1;i<=M;i++)
        {
            if(M%i==0)
            {
                num[cnt]=i;
                pos[i]=cnt++;
            }
        }
        mem(dp[0],-1);
        dp[0][0][0]=1;
        for(int i=1;i<=K;i++)
        {
            mem(dp[i&1],-1);
            for(int j=i-1;j<=N;j++)
            {
                for(int k=0;k<cnt;k++)
                {
                    if(dp[(i+1)&1][j][k]==-1) continue;
                    for(int r=0;r<cnt&&j+num[r]<=N;r++)
                    {
                        int l=j+num[r];
                        int s=LCM[num[r]][num[k]];
                        if(s<=M&&pos[s]!=-1)
                        {
                            s=pos[s];
                            if(dp[i&1][l][s]==-1) dp[i&1][l][s]=0;
                            dp[i&1][l][s]+=dp[(i+1)&1][j][k];
                            if(dp[i&1][l][s]>=MOD) dp[i&1][l][s]-=MOD;
                        }
                    }
                }
            }
        }
        printf("%d\n",dp[K&1][N][pos[M]]==-1?0:dp[K&1][N][pos[M]]);
    }
    return 0;
}


  • 4
    点赞
  • 2
    评论
  • 1
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

评论 2 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

ACM_cxlove

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值