简介
- 二分,是指在答案在的区间范围中二分
- 通过二分法每分出一个中间值,就判断是否是答案,然后逐渐缩小区间范围得到答案
- 通过二分的方法,可以跳过很多没有必要的比较和选择
- 二分算法的时间复杂度是 O (logN)
下面列出一些常见的问题类型
1. 数组的二分查找
给定一个有序的数组,查找k是否在数组中
注意:数组二分要求 数组中元素必须是有序的
对于有序的数组可以直接进行二分查找
对于无序的数组可以通过sort()
排序使其成为有序数组
数组二分模板
在有 n 个元素的数组中查找元素 k 是否存在并得到数组下标
#include <bits/stdc++.h>
using namespace std;
int num[1000000];
int main()
{
int n, q, l, r, mid, k;
while (scanf("%d", &n) != -1)
{
for (int i = 0; i < n; i++)
scanf("%d", &num[i]);
scanf("%d", &k);
l = 0;
r = n - 1;
while (l <= r)
{
mid = (l + r) / 2;
if (num[mid] == k)
break;
else if (num[mid] < k)
l = mid + 1;
else
r = mid - 1;
}
if (num[mid] == k)
printf("%d 存在,数组下标为 %d\n", k, mid);
else
printf("%d 不存在\n", k);
}
return 0;
}
C++ STL 中的数组二分
头文件 `#include
- upper_bound() 返回第一个大于被查找元素的元素地址
- lower_bound() 返回第一个大于等于被查找元素的元素地址
调用格式
- upper_bound (数组首地址,数组尾地址,被查找元素)
- lower_bound (数组首地址,数组尾地址,被查找元素)
STL 数组二分模板
在有 n 个元素的数组中查找第一个大于(等于)元素 m 的数组下标
注意:upper_bound()
与 lower_bound()
返回的是元素地址,需要减去数组首地址获得数组下标
#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
int n,m,num[10086];
while(cin>>n)
{
for(int i=0;i<n;i++)cin>>num[i];
cin>>m;
cout<<"第一个大于该元素的数组下标为"<<upper_bound(num,num+n,m)-num<<endl;
cout<<"第一个大于等于该元素的数组下标为"<<lower_bound(num,num+n,m)-num<<endl;
}
return 0;
}
2. 区间的二分查找
区间的二分查找的前提条件:区间内函数必须是单调的
特点:找不到具体的值但是可以确定大体的一个范围,达到一定精度后可以看作答案。
注意:有些题目容易出现精度玄学问题
问题类型:
- 求给定函数的零点,把区间折半来找零点
- 已知 f (x) 求 f (x) 对应的 x 值
区间二分模板
给定 y = f (x) 中 y 对应的 x 值
保证 -20 < x < 20
输入 y 输出 x
#include <bits/stdc++.h>
using namespace std;
double f(double x) //定义函数 (这里随便抓了一个)
{
return 0.0001*pow(x,5)+0.003*pow(x,3)+0.5*x-3;
}
int main()
{
double y,l,r,mid;
while(scanf("%lf",&y)!=-1)
{
l=-20;
r=20;
while(l<=r)
{
mid=(l+r)/2;
//if (r-l<=1e-5) break; //也可利用区间范围大小判断跳出条件
if(fabs(f(mid)-y)<1e-5)break; //由于double类型不能直接用==判断 因此答案近似一定程度可以认为找到答案
if(f(mid)<y)l=mid;
else r=mid;
}
printf("%.4f\n",mid);
}
return 0;
}
3. 可转化为二分的问题
- 可转化为二分的问题
例如:NEFU OJ Problem 1648 切绳子
题目大意: - 有 N 条绳子,它们的长度分别为 Li。
- 从它们中切割出 K 条长度相同的绳子,问这 K 条绳子每条最长能有多长?
这个问题可以将每条绳子的长度二分,其中
- 左边界为把最长的绳子切成 k 段,每段绳子的长度
- 右边界为最长绳子的长度
然后再判断在这种情况下能切出多少条绳子,如果切多了或者正好,每条绳子就可以更长
如果切出来的条数不够,每条绳子的长度就要减少