题目链接:点击打开链接
题意:给定n*m的矩阵
有一个人a从左上角↖走到右下角↘,只能↓或→走
另一个人b从左下角↙走到右上角↗,只能↑或→走
使得2个人的路径有且仅有一个格子是相交的。
统计2个人的权值和(相交格子的权值和不计)
问最大的权值和是多少。
思路:
首先转换一下题意,也就是找一个格子与4个角落连不相交的线。
我们观察相交的那个格子,那个格子的上下左右必然对应着一个角落。
(i,j)点,那么(i-1,j)必然对应左上角或右上角的其中一个角落。
这样(i,j)点的4个相邻格子各自对应一个角落(这种情况有2种)
剩下任务就是计算每个格子到某个角落的最大权值和。
bfs以4个角落为起点,预处理出任意点到该角落的最大路径和。
然后枚举一下相交点。
#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
#define N 1005
#define ll __int64
ll vis[N][N], Time;
ll n, m;
ll dis[4][N][N];
int aaaa;
int cccc;
ll mp[N][N];
ll step[4][2][2] = \
{ {0,1,1,0}, {0,-1,1,0}, {-1,0,0,1}, {-1,0,0,-1}};
void bfs(ll cur, ll x, ll y){
vis[x][y] = Time;
queue<ll>qx,qy; qx.push(x); qy.push(y);
dis[cur][x][y] = mp[x][y];
while(!qx.empty()){
x = qx.front(); qx.pop();
y = qy.front(); qy.pop();
for(ll i = 0; i < 2; i++){
ll nowx = x + step[cur][i][0], nowy = y + step[cur][i][1];
if(!(1<=nowx&&nowx<=n&&1<=nowy&&nowy<=m))continue;
dis[cur][nowx][nowy] = max(dis[cur][nowx][nowy], mp[nowx][nowy]+dis[cur][x][y]);
if(vis[nowx][nowy]==Time)continue;
vis[nowx][nowy] = Time;
qx.push(nowx); qy.push(nowy);
}
}
}
int main(){
ll u, v, i, j, que;
Time = 0;
while(~scanf("%I64d %I64d",&n,&m)){
memset(dis, 0, sizeof dis);
for(i=1;i<=n;i++)for(j=1;j<=m;j++)scanf("%I64d",&mp[i][j]);
Time++; bfs(0,1,1);
Time++; bfs(1,1,m);
Time++; bfs(2,n,1);
Time++; bfs(3,n,m);
ll ans = 0;
for(i=2;i<n;i++)
for(j=2;j<m;j++)
{
ll tmp = dis[0][i-1][j] + dis[1][i][j+1] + dis[2][i][j-1] + dis[3][i+1][j];
ans = max(ans, tmp);
tmp = dis[0][i][j-1] + dis[1][i-1][j] + dis[2][i+1][j] + dis[3][i][j+1];
ans = max(ans, tmp);
}
printf("%I64d\n",ans);
}
return 0;
}
/*
3 4
100 100 100 100
100 1 100 100
100 100 100 100
4 4
10 10 10 10
100 100 100 100
100 1 100 100
100 100 100 100
3 4
10 10 10 10
100 1 100 100
100 100 100 100
*/