[Codeforces 719 E. Sasha and Array] 矩阵快速幂+线段树

标签: Matrix 矩阵快速幂 线段树 模板
611人阅读 评论(0) 收藏 举报
分类:

[Codeforces 719 E. Sasha and Array] 矩阵快速幂+线段树

题目链接[Codeforces 719 E. Sasha and Array]
题意描述:给定N个数a1,a2,,an,有M次操作。
操作1:将连续区间aL,aL+1,,aR中的所有数字+x
操作2:对于连续区间aL,aL+1,,aR,求i=Ri=LFibo(ai)mod109+7
其中,Fibo(x)表示的是求第x个的Fibonacci 数。(1n100000,1m100000,1ai109)
解题思路:如果已知Fibo(x0), 求Fibo(x0+x),那么直接可以用矩阵快速幂,乘上变换矩阵的(x1)次方。由于矩阵乘法具有结合律,即

AlB+Al+1B++ArB=(Al+Al+1++Ar)B
那么对于操作1,因此线段树更新的时候乘上矩阵B, 然后懒惰标记维护一个变换矩阵的乘积B即可。
贴一个矩阵模板。

#include <bits/stdc++.h>
using namespace std;

#define FIN             freopen("input.txt","r",stdin)
#define FOUT            freopen("output.txt","w",stdout)
#define lson            l, mid, (rt << 1)
#define rson            mid + 1, r, (rt << 1 | 1)
#define __mid__         int mid = (l + r) >> 1

typedef __int64 LL;

const int MAXN = 100000 + 5;
const int MOD = 1e9 + 7;

int N, M, tp, L, R, X;

struct Mat {
    static const int MX = 2;
    int v[MX][MX];
    void O() {
        memset(v, 0, sizeof(v));
    }
    void E() {
        O();
        for(int i = 0; i < MX; i++) v[i][i] = 1;
    }
    Mat operator + (const Mat& e) const {
        Mat ret; ret.O();
        for(int i = 0; i < MX; i++) {
            for(int j = 0; j < MX; j++) {
                ret.v[i][j] = ((LL)v[i][j] + e.v[i][j]) % MOD;
            }
        }
        return ret;
    }
    Mat operator - (const Mat& e) const {
        Mat ret; ret.O();
        for(int i = 0; i < MX; i++) {
            for(int j = 0; j < MX; j++) {
                ret.v[i][j] = ((LL)v[i][j] - e.v[i][j] + MOD) % MOD;
            }
        }
        return ret;
    }
    Mat operator * (const Mat& e) const {
        Mat ret; ret.O();
        for(int k = 0; k < MX; k++) {
            for(int i = 0; i < MX; i++) {
                if(v[i][k] == 0) continue;
                for(int j = 0; j < MX; j++) {
                    ret.v[i][j] = (ret.v[i][j] + (LL) v[i][k] * e.v[k][j]) % MOD;
                }
            }
        }
        return ret;
    }
    Mat operator ^ (int b) const {
        Mat a, ret; ret.E();
        memcpy(a.v, v, sizeof(v));
        while(b > 0) {
            if(b & 1) ret = ret * a;
            a = a * a;
            b >>= 1;
        }
        return ret;
    }
} ini, tra, mat;

struct Seg {
    Mat sum, tag;
    bool col;
} seg[MAXN * 3];
inline void pushUp(int rt) {
    seg[rt].sum = seg[rt << 1].sum + seg[rt << 1 | 1].sum;
}
inline void down(int rt, int fa) {
    seg[rt].col = seg[fa].col;
    seg[rt].sum = seg[fa].tag * seg[rt].sum;
    seg[rt].tag = seg[fa].tag * seg[rt].tag;
}
inline void pushDown(int rt) {
    if(seg[rt].col) {
        down(rt << 1, rt);
        down(rt << 1 | 1, rt);
        seg[rt].tag.E();
        seg[rt].col = false;
    }
}
void build(int l, int r, int rt) {
    seg[rt].tag.E();
    seg[rt].col = false;
    if(l == r)  {
        scanf("%d", &X);
        mat = tra ^ (X - 1);
        seg[rt].sum = mat * ini;
        return;
    }
    __mid__;
    build(lson);
    build(rson);
    pushUp(rt);
}
void update(int l, int r, int rt) {
    if(L <= l && r <= R) {
        seg[rt].sum = mat * seg[rt].sum;
        seg[rt].tag = mat * seg[rt].tag;
        seg[rt].col = true;
        return;
    }
    __mid__;
    pushDown(rt);
    if(L <= mid) update(lson);
    if(R > mid) update(rson);
    pushUp(rt);
}
int query(int l, int r, int rt) {
    if(L <= l && r <= R) {
        return seg[rt].sum.v[0][0];
    }
    __mid__;
    pushDown(rt);
    int ret = 0;
    if(L <= mid) ret = query(lson);
    if(R > mid) ret += query(rson);
    return ret % MOD;
}

int main() {
#ifndef ONLINE_JUDGE
    FIN;
#endif // ONLINE_JUDGE
    ini.v[0][0] = 1, ini.v[0][1] = 0;
    ini.v[1][0] = 0, ini.v[1][1] = 0;
    tra.v[0][0] = 1, tra.v[0][1] = 1;
    tra.v[1][0] = 1, tra.v[1][1] = 0;
    scanf("%d %d", &N, &M);
    build(1, N, 1);
    while(M --) {
        scanf("%d %d %d", &tp, &L, &R);
        if(tp == 1) {
            scanf("%d", &X);
            mat = tra ^ X;  /// 因为把这个写在update里面,TLE了好几发...
            update(1, N, 1);
        } else {
            printf("%d\n", query(1, N, 1));
        }
    }
    return 0;
}
查看评论

机器学习之矩阵

购买课程后添加小助手为好友(微信ID:superaihelper)加入课程讨论群。本课程囊括了机器学习理论中所需要的和线性代数相关的所有知识。 主要有矩阵的定义、性质、运算、分解以及应用。另外,还会讲解线性空间、范数、生成子空间相关知识。
  • 2017年08月05日 13:31

cf/Codeforces Round #373 div1-C/div2-E Sasha and Array 线段树 + 维护矩阵快速幂

http://codeforces.com/contest/718/problem/C 题意:  n个数,维护两个操作,操作1,【l,r】区间每个位置+x,操作2,【l,r】区间内,以每个位置上的数...
  • viphong
  • viphong
  • 2016-09-24 01:20:19
  • 381

CodeForces-719E Sasha and Array(线段树+矩阵快速幂)

E. Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes ...
  • qq_31759205
  • qq_31759205
  • 2016-09-28 22:11:12
  • 503

Codeforces 691E Xor-sequences【矩阵快速幂,好题】

题目链接:http://codeforces.com/problemset/problem/691/题意:给定序列,从序列中选择k(1≤k≤1e18)k(1 \le k \le 1e18)个数(可以重...
  • Yukizzz
  • Yukizzz
  • 2016-07-15 21:01:26
  • 1111

codeforces 718 C.Sasha and Array

codeforces 718 C.Sasha and Array标签(空格分隔): 复数运算 Fibonacci给你一个1~n的数列,每个数代表了是Fibonacci数列的第几项(f[0]=0),两种...
  • LsFlyt
  • LsFlyt
  • 2016-09-26 16:27:17
  • 236

Codeforces 514E Darth Vader and Tree DP + 矩阵快速幂

题目大意: 给定n和x, (n 大致思路: 思路写在代码注释里了 代码如下: Result  :  Accepted     Memory  :  852 KB     T...
  • u013738743
  • u013738743
  • 2015-02-25 22:27:37
  • 504

线段树+矩阵快速幂 codeforces718C Sasha and Array

传送门:点击打开链接 题意:操作1,区间[l,r]的数字+x 操作2,求sigma f(i),l 答案取模1e9+7 首先斐波那契数列用矩阵快速幂求,谁都会的。 这里有一个矩阵乘法的性质,A...
  • qwb492859377
  • qwb492859377
  • 2016-09-24 09:55:04
  • 789

codeforces 482B. Interesting Array【线段树区间更新】

题目:codeforces 482B. Interesting Array 题意:给你一个值n和m中操作,每种操作就是三个数 l ,r,val。就是区间l---r上的与的值为val,最后问你...
  • y990041769
  • y990041769
  • 2014-10-29 19:34:10
  • 2097

Codeforces Gym 100796E Permutation Polygon(线段树)

题目链接: http://codeforces.com/gym/100796/problem/E 题目大意: 给一些点连成线以后,问总共有多少个交点。 思路: 对于两条线(x,y)和(a...
  • aaaaacmer
  • aaaaacmer
  • 2015-11-16 11:59:02
  • 456

E. Sasha and Array——矩阵+线段树

E.Sasha and Array 很神奇的一道题 题意大概就是支持区间加,然后求区间和。。。 区间和的求法是 sigema(i,l,r) f[i]  f[i]表示斐波那契序列第i项 例如一个区间的数...
  • Fop_zz
  • Fop_zz
  • 2017-06-15 10:15:06
  • 163
    个人资料
    持之以恒
    等级:
    访问量: 33万+
    积分: 6108
    排名: 5135
    友情链接
    最新评论