[LeeCode 862. 和至少为 K 的最短子数组]单调栈

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/ACMore_Xiong/article/details/81782268

[LeeCode 862. 和至少为 K 的最短子数组]单调栈

1. 题目链接

[LeeCode 862. 和至少为 K 的最短子数组]

2. 题意描述

题意描述

3. 解题思路

首先,预处理出数组的前缀和pre, 当区间[l,r]的子数组和至少为K时,那么有: pre[r]pre[l1]+K;
然后,就是需要求出以第i个元素为左端点的子数组中,子数组和至少为K的最小长度,换句话说, 求出满足下面3个条件的右端点:

  1. ix
  2. pre[x]pre[i1]+K
  3. min{xl+1}

可以发现, x越靠小,且pre[x]越大越好. 反向遍历就可以保证x递减, 然后维护一个单调递减的栈stk,保证添加进来的x满足:pre[x]<pre[stk.top()].此时,对单调栈进行二分查找,就可以求出子数组的右端点了.
算法总复杂度是:O(nlog2n)

4. 参考代码

#ifdef __LOCAL_WONZY__
#include <bits/stdc++.h>
using namespace std;
#endif

class Solution {
public:
    typedef long long ll;
    static const int inf = 0x3f3f3f3f;
    vector<long long> pre;
    long long sum(int le, int ri) {
        return le == 0 ? pre[ri] : pre[ri] - pre[le - 1];
    }
    int shortestSubarray(vector<int>& A, int K) {
        int n = A.size();
        pre = vector<long long>(n);
        pre[0] = A[0];
        for(int i = 1; i < n; ++i) pre[i] = pre[i - 1] + A[i];
        vector<int> stk(n);
        int sz = 0, len = inf;
        for(int i = n - 1; i >= 0; --i) {
            while(sz > 0 && pre[stk[sz - 1]] <= pre[i]) -- sz;
            stk[sz ++] = i;
            long long val = (i == 0 ? 0 : pre[i - 1]) + K;
            int lb = 0, ub = sz - 1, md, j = inf;
            while(lb <= ub) {
                int md = (lb + ub) >> 1;
                if(pre[stk[md]] >= val) j = stk[md], lb = md + 1;
                else ub = md - 1;
            }
            len = min(len, j - i + 1);
        }
        return len == inf ? -1 : len;
    }
};

#ifdef __LOCAL_WONZY__
int main() {
#ifdef __LOCAL_WONZY__
    freopen("input-1.txt", "r", stdin);
#endif
    vector<int> a = {77,19,35,10,-14};
    Solution s;
    cout << s.shortestSubarray(a, 19) << endl;;
    return 0;
}
#endif
展开阅读全文

没有更多推荐了,返回首页