康托展开(基于全排列的某一种hash)

康托展开:

X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0!

ai为整数,并且0<=ai<i(1<=i<=n)


先举个简单例子

{1,2,3,4,...,n}表示1,2,3,...,n的排列如 {1,2,3} 按从小到大排列一共6个 123 132 213 231 312 321

代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来。

他们间的对应关系可由康托展开来找到。 

如我想知道321是{1,2,3}中第几个大的数可以这样考虑:

第一位是3,当第一位的数小于3时,那排列数小于321 如 123 213 小于3的数有1,2 所以有2*2!个 

再看小于第二位2的 小于2的数只有一个就是1 所以有1*1!=1 所以小于321的{1,2,3}排列数有2*2!+1*1!=5个

所以321是第6个大的数   2*2!+1*1!是康托展开 


再举个例子

1324是{1,2,3,4}排列数中第几个大的数 

第一位是1小于1的数没有,是0个 0*3! 

第二位是3小于3的数有1,2  但1已经在第一位了所以只有一个数2 1*2! 

第三位是2小于2的数是1,  但1在第一位所以有0个数 0*1!

所以比1324小的排列有0*3!+1*2!+0*1!=2个 1324是第三个大数。


看一段 把一个8位的不重复八进制数字串进行康托展开 的代码


unsigned long cantor(unsigned long S)
{
	long x=0,i,p,k,j;
	bool hash[8]={false};
	for (i=8;i>=2;i--)
	{
		k=S>> 3*(i-1);
		S-=k<<3*(i-1);
		hash[k]=true;
		p=k;
		for (j=0;j<=k-1;j++)
			if (hash[j])
				p--;
		x+=fac[i-1]*p; //fac存的是阶乘 fac[1] = 1, fac[2] = 2, fac[3] = 6...
	}
	return x;
}

康托展开的逆运算:

 

{1,2,3,4,5}的全排列已经从小到大排序,要找出第16个数:

1. 首先用16-1得到15

2. 用15去除4! 得到0余15

3. 用15去除3! 得到2余3

4. 用3去除2! 得到1余1

5. 用1去除1! 得到1余0

有0个数比它小的数是1

所以第一位是1

有2个数比它小的数是3,但1已经在之前出现过了所以是4

有1个数比它小的数是2,但1已经在之前出现过了所以是3

有1个数比它小的数是2,但1,3,4都出现过了所以是5

最后一个数只能是2

所以这个数是14352


康托展开的逆运算代码:

void invKT(int n, int k, int s[])  
{  
    int i, j, t, vst[8]={0};  
    k--;  
    for (i=0; i<n; i++)  
    {  
        t = k/fac[n-i-1];  
        for (j=1; j<=n; j++)  
            if (!vst[j])  
            {  
                if (t == 0) break;  
                t--;  
            }  
        s[i] = j;  
        vst[j] = 1;  
        k %= fac[n-i-1];  
    }  
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值