排序:
默认
按更新时间
按访问量

蓄水池算法证明

蓄水池算法 蓄水池算法是一种大数据随机抽样算法,对于海量流式数据,在未知数据规模(N)的情况下.对数据样本进行随机选取k个样本,来达到均匀抽样的目的:对于每个样本被选择的概率都是Pxi被选择=knP_{x_i被选择}=\frac{k}{n}Pxi​被选择​=nk​. 算法 int a[k]={x1...

2018-10-27 20:57:16

阅读数:11

评论数:0

Batch Normalization文章学习笔记

BN学习笔记 Batch Normalization的提出 BN是谷歌提出的一种深度学习,网络优化的结构,能够加速网络的训练. 文章在提出方法之前,对之前的一些成果进行了回顾包括 深度学习网络在训练过程中,训练变慢的原因:随着网络深度的加深,由于训练过程的信息前向传递的过程中,一旦前一层的La...

2018-09-30 19:53:58

阅读数:47

评论数:0

Clion配置stm32嵌入式开发环境

简书也不怎么用,搬迁一篇之前写的文章 , 留作足迹吧~

2018-05-22 22:34:38

阅读数:343

评论数:0

DP的非递归思路笔记

最近在刷题,今天有一道题影响比较深刻,顺便说一下自己的感悟。 对于求所有情况下的极值,很有可能就是利用DP来求解,DP的求解,有2种思路。 一种是利用函数调用递归,缺点对于同样一个根节点其实进行了多次的重复计算,非常浪费计算资源。思路: 原问题→→\rightarrow子问题→→\righta...

2018-04-18 14:33:16

阅读数:50

评论数:0

Dear imgui项目配置记录

Dear imgui 项目配置记录 框架简介 dear imgui是一款轻量级的GUI 跨平台框架。 由于原文给的只是源代码,编译环境是基于IDE的项目配置文件,不是很方便。此处我将使用xmake这款轻量级的自动化编译,来构建项目。 Dear imgui运行环境要求 OpenGL2...

2018-04-13 11:56:32

阅读数:928

评论数:1

cmake 编译 nasm 文件

最近在学习《操作系统真象还原》,在学习的过程考虑到文件可能会过程中会写的文件比较多,想要使用cmake来配置最基本的编译方案,来减少后期过程中,手动编译带来的麻烦。由于没有现成的例子,网上好多的版本都是汇编和c的混合编译,生成的代码都是基于平台相关的运行文件,这些只要全部交给c来处理就行了。需求:...

2017-11-01 21:31:42

阅读数:847

评论数:0

Linux下 PyopenGL运行libGL报错,解决方案

在Deepin下运行Python的pyopengl库的时候,会莫名其妙的出现如下错误libGL error: unable to load driver: i965_dri.so .....根据网上的资料是Anaconda(我使用的是这个商业的python发行版)里面的libstdc++.so文件...

2017-10-13 23:21:27

阅读数:671

评论数:0

pyqt5 信号槽机制的官方文档笔记

懒得再写一遍了,对照官方文档做的笔记百度网盘下载pdf

2017-08-02 22:05:44

阅读数:404

评论数:0

pyqt 状态机简单例子

from PyQt5.QtCore import (pyqtSignal,QPointF,QPoint,QPropertyAnimation,QRect, QRectF,QState,QEasingCurve,QStateMachine,Qt) ...

2017-08-02 16:58:58

阅读数:240

评论数:0

pyqt5 官方例子笔记 animate-1

animatedtiles.py 总结:这个小程序,主要涉及到控件的布局(boundingRect Method),形状的绘制(shape函数重载来自定义控件的形状),控件图片的加载(资源文件的引入pyrcc,Button对象将资源对象最为初始化参数),整个界面的大体布局(scene view ...

2017-08-02 01:04:06

阅读数:4128

评论数:0

《PyQt5 快速编程》例子注释

Fraction Slider.py的qt4代码修改后的qt5版本import platform import PyQt5 from PyQt5.QtCore import QPointF,QRectF,QSize,Qt,QObject,pyqtSignal from PyQt5.QtGui im...

2017-07-25 15:16:21

阅读数:4203

评论数:0

最大最小蚁群算法求解TSP商旅问题

最大最小蚁群算法求解TSP商旅问题算法要点 每条路径上的信息素浓度都有一个最大最小值,最小信息素增加对于更优解探索的可能性,最大信息素浓度保证经验对于蚁群的启发性。 对于蚂蚁的下一次选择使用轮盘赌的方式进行选择,每条路径的权重是根据启发公式进行计算,合适的alpha beta能够加速算法的收敛,这...

2017-07-25 11:09:26

阅读数:4349

评论数:0

VSCode c++配置文件

lanunch.json{ "version": "0.2.0", "configurations": [ { "name": "C++ Launch ...

2017-02-14 21:55:33

阅读数:1648

评论数:0

VSCode python环境运行搭建

tasks.json{ "version": "0.1.0", "command": "python", "isShellCommand": true, "...

2016-09-16 13:42:50

阅读数:1765

评论数:0

前馈神经网络模型-误差逆向传播算法

BP算法的核心步骤 1. 求得在特定输入下实际输出与理想输出的平方误差函数。 2. 利用误差函数对神经网络中的阈值以及连接权值根据导数的“链式求导”法则对各种变量求导。 3. 根据梯度下降算法,对极小值进行逼近,当满足条件时,跳出循环 由于对单个样本来说可以不断更新权值阈值,无限逼近期望值:...

2016-07-15 08:02:24

阅读数:2177

评论数:0

《统计学习方法》学习笔记—感知机模型python实现

感知机  感知机是二类分类的线形模型,输入为实例的特征向量,输出为实例的类别,取值为-1/+1两种值。   感知机对应于输入空间的特征向量,将其中的实例划分为正负两类的分离超平面,属于判别模型。   目的:旨在求出将训练数据进行线形划分的分离超平面。 前提条件:数据集是线形可分类的。(例如:X...

2016-06-11 00:06:52

阅读数:658

评论数:0

IAR下设置格式化输出

IAR下printf格式化输出设置 试验环境LPLD固件库3.1 软件平台IAR 7.2 在格式化输出的过程中意外的发现一个奇怪的问题:​ printf函数在格式化输出的时候居然不支持%f %g的格式化形式,这是很奇怪的,因为同样的C语言,VC++里面是完全能够运行得到正确的结果的,在IAR下...

2016-04-28 02:02:40

阅读数:2320

评论数:1

解析校内网邮箱

一并写的参考了前人的资料,修复了一些程序中存在的bug,对于中文附件文件名解析的时候会出现需要迭代解码的情况, 写邮箱登陆容易,对邮箱的解析确是一件麻烦的事情遇到不懂的地方,多用Pycharm调试,看看错在哪config.ini配置文件[mail] smpthost=mail.bjtu.edu....

2016-03-14 21:17:19

阅读数:551

评论数:0

多进程爬虫

这几天得准备考研复试了,紧张,就没怎么更新博客 把自己这几天爬虫的知识代码总结下 本来准备用BeautifulSoup进行获取标签的,但是没找到好的方法,发现自己还是最适合使用xpath…..对内容中的同样li标签进行迭代获取信息 单线程太慢了,慢的报警,网络返回实在慢,(实际点开网页又不是太慢...

2016-03-14 21:04:47

阅读数:1418

评论数:0

sublime 常见错误 UnicodeDecodeError: 'gbk' codec can't decode bytes

使用windows sublime编译python基本都会遇到这个问题,每次都是Windows的锅,微软好苦==,其实是sublime自己的锅……打开sublime找到这个文件 C:\Users\sunqi\AppData\Roaming\Sublime Text 3\Packages\Pytho...

2016-03-06 11:09:17

阅读数:2391

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭