算法分析的目的就是找出最好、最合适的算法来解决问题。
时间复杂度
在计算机科学中,算法的时间复杂度是一个函数,它定量地描述了一个算法的运行时间。时间复杂度常用一个大O符号来表示,不包括这个函数的低阶项和首项系数。
时间复杂度是渐近的,考虑的是这个值趋于无穷时的情况。比如一个算法的执行时间为3n2+2n+3,这里我们用大O符号来表示时,不考虑低阶项,也就是只考虑最高阶项3n2,(也不考虑首项的系数,所以我们会直接将这个算法的时间复杂度表示为O(n2)。
一般我们在计算时间复杂度时,需要考虑算法是否会有多重嵌套循环(即代码中包含的循环内部还有一个循环操作),因为嵌套循环势必会使时间复杂度升阶。而对于一个列表进行循环有限次数的操作,则无需考虑,因为我们会忽略首项的系数。
我们在计算一个算法的时间复杂度时,首先需要找出算法的核心部分,然后根据代码确认时间复杂度。
一般的时间复杂度按照性能从差到好有这么几种:O(n3)、O(n2)、O(n log n)、O(n)、O(log n)、O(1)。当然,性能差的情况可能还有O(n4)甚至更高的幂数,但是当算法的时间复杂度达到O(n2)以上时,性能就会相当差,我们应该寻找更优的方案。
空间复杂度
其实我们在做算法分析时,往往会忽略空间复杂度,可能是因为现在计算机的空间已经越来越便宜了,成本很低,而一台计算机的CPU的性能始终很难得到太大的提升。但是空间复杂度作为另一个算法性能指标,也是我们需要掌握的,这能够让程序在时间和空间上都得到优化,成为一个好的算法。
空间复杂度的计算方式和时间复杂度是一样的,都用大O符号来表示。空间复杂度是对一个算法在运行过程中所消耗的临时空间的一个度量。
空间复杂度的计算方式和时间复杂度一样,也不包括这个函数的低阶项和首项系数。
一般我们认为对于一个算法,本身的数据会消耗一定的空间,可能还需要一些其他空间,如果需要的其他空间是有限的,那么这个时间复杂度为O(1)。相对地,也有O(n)、O(n log n)、O(n2)。
在学会了时间复杂度的相关内容之后,学习空间复杂度其实就没有什么难点了,对于更多的内容,我们会通过后面的算法慢慢地了解。
稳定性
算法性能分析一般分为时间复杂度分析和空间复杂度分析。另外,在排序算法中会有另一个指标–稳定性。
什么是稳定性呢?在排序算法中,可能在一个列表中存在多个相等的元素,而经过排序之后,这些元素的相对次序保持不变,这时我们称这个算法是稳定的。若经过排序之后次序变了,那么就是不稳定的。
稳定性有什么用呢?如果算法是稳定的,那么第1个元素排序的结果可以被第2个相同值的元素排序时所用,也就是说如果算法是稳定的,那么可能避免多余的比较。
而在某些情况下,若是值一样的元素也要保持与原有的相对次序不变,那么这时必须用一个稳定的算法。