反演

什么是反演:

有函数\(F(x)\),令\(G(s)=\sum F(x)\),其中x与s的关系自定,在已知\(G\)\(F\)的过程叫反演。

集合反演:\(x\subseteq s\)

公式:\(F(x)=\sum_{s\subseteq x} (-1)^{|x|-|s|}\times G(s)\)
推导过程: 核心是容斥。
\(1.\)首先,当\(x=s\)那么所有\(t\subseteq sF(t)\)都被加入,我们要把除了\(x\)之外的都删掉。
\(2.\)我们将\(x\)\(s\)相差\(1\)的都减去,他们两两之间的交集会减两次,还要再加回,那么就变成了容斥的形式。

莫比乌斯反演:\(x|s\)

公式:\(F(n)=\sum_{d|n} \mu (\frac n d)\times G(d)\)
推导过程:与集合反演类似,但是更加复杂,核心也是容斥。
\(step 1:\)首先,\(\mu(\frac n d)\)代表\(G(x)\)要加入还是删除,类似于集合反演,我们想要找到在\(d\)\(n\)的某种关系下固定的系数,对于集合是\(|x|-|s|\),对于莫比乌斯反演,我们选择\(\frac n d\)
我们令\(x=\frac n d\),分类讨论:
\(step 2:\)\(t=1\),即\(n=d\),我们必须选,于是\(\mu(1)=1\)
\(step 3:\)\(t\)是质数,是\(n\)变成“子集”的最小单位,我们把他删除,\(\mu (p)=-1\)
\(step 4:\)\(t\)是两个不同质数的乘积,那么\(d\)被这两个质数删了两次要加回,那么\(\mu(t)=1\)
\(step5:\)那么三个质数时呢 ,我们又要减去,现在又变成了容斥的形式,所以当\(t\)\(k\)个不同质数的乘积时\(\mu(t)=(-1)^k\)
\(step6:\)我们发现整个过程已经完毕,那么其余\(\mu=0\)
总结-莫比乌斯函数:
\(~~~~~~~~~~~~~~~\mu(x)={\begin{cases}{1~~~~~~~~~~(x=1)}\\{(-1)^k~~(x=p_1\times p_2\times\cdots\times p_k)}\\{0~~~~~~~~~~(others)}\end{cases}}\)
一些公式:
\[\sum_{d|m}\mu(d)=[m==1]\]
(组合数可证)
\[\sum_{d|m}\frac{\mu(d)} d=\frac{\varphi(n)} n\]
(左面通分,同去掉分母\(n\),根据\(n=\sum_{d|n}\varphi(d)\)反演可得)\[\sum_{d|n}\mu(\frac n d)\sigma(d)=1\]
(反演回去可得\(\sigma(n)=\sum_{d|n} 1\)
扩展-莫比乌斯反演的另一种形式:\(s|x\)
\[F(n)=\sum_{n|d}\mu(\frac d n)G(d)\]
与原式一样容斥可得到。
应用:
\[\sum_{i=1}^N\sum_{j=1}^N gcd(i,j)\]
\(f(x)\)\(gcd=x\)的数对个数,\(g(x)\)\(gcd=k\times x\)的数对个数,那么:
\[g(x)=(\lfloor\frac N x\rfloor)^2\]
根据扩展:
\[f(d)=\sum_{d|n}\mu(\frac n d) g(n)=\sum_{d|n}\mu(\frac n d) \lfloor \frac N n\rfloor^2\]
\[ans=\sum_{d=1}^N d\sum_{d|n}\mu(\frac n d)\lfloor\frac N n \rfloor^2\]

二项式反演:

转载于:https://www.cnblogs.com/Smeow/p/10582566.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值