Android数据存储:Shared Preferences

本文详细介绍了Android中SharedPreferences的使用方法,包括如何保存和读取键值对数据,适用于存储简单的数据类型,如布尔值、整数、浮点数、长整型和字符串。文章还提供了示例代码和步骤说明。

Android数据存储之SharedPreferences

在Android系统中提供了多种存储技术.通过这些存储技术可以将数据存储在各种存储介质上, Android 为数据存储提供了如下几种方式:
1、文件
2、SharedPreferences( 参数 )
3、SQLite数据库
4、内容提供者( Content provider )
5、网络

SharedPreferences是一种轻量级的数据存储方式,它可以用键值对的方式把简单数据类型(boolean、int、float、long和String)存储在应用程序的私有目录下(data/data/[包名] /shared_prefs/)自己定义的xml文件中,在DDMS 中的File Explorer中的/data/data//shares_prefs下。

使用SharedPreferences保存key-value对的步骤如下:
(1) 使用Activity类的getSharedPreferences方法获得SharedPreferences对象。其中存储key-value的文件名的名称由getSharedPreferences方法的第一个参数指定。
(2) 使用SharedPreferences接口的edit获得SharedPreferences.Editor对象。
(3) 通过SharedPreferences.Editor接口的putXXX方法保存key-value对。其中XXX表示value的不同数据类型。Boolean类型的value则是用putBoolean方法,字符串类型的则为putString方法。
(4) 通过SharedPreferences.Editor接口的commit方法保存key-value对。Commit方法相当于数据库事务中的提交(commit)操作。只有在事件结束后进行提交,才会将数据真正保存在数据库中。保存key-value也是一样。

代码如下:
//读取数据
/* 装载数据 */
// 取得活动的preferences对象.
SharedPreferences settings = getPreferences(Activity.MODE_PRIVATE);
// 取得值.
mbMusic = settings.getBoolean("bmusic", false);
//存储数据
/* 这里我们在退出应用程序时保存数据 */
// 取得活动的preferences对象.
SharedPreferences uiState = getPreferences(0);
// 取得编辑对象
SharedPreferences.Editor editor = uiState.edit();
// 添加值
ditor.putBoolean("bmusic", mbMusic);
// 提交保存
editor.commit();

相关参考链接:http://blog.csdn.net/cjjky/article/details/6460165

相关代码下载链接:http://download.csdn.net/detail/klcf0220/5888239

转载于:https://www.cnblogs.com/klcf0220/p/3244259.html

内容概要:本文研究基于纳什博弈和交替方向乘子法(ADMM)的多微网主体能源共享模型,旨在实现多个微网之间的高效能源交互与优化调度。通过建立非合作博弈模型,各微网作为独立决策主体在满足自身需求的前提下追求成本最小化,利用ADMM算法实现分布式求解,确保隐私保护与计算效率。文中详细阐述了模型构建、博弈均衡分析、ADMM收敛性处理及仿真验证过程,并提供完整的Matlab代码实现,复现了SCI高水平论文的核心成果。; 适合人群:具备一定电力系统优化背景、博弈论基础知识及Matlab编程能力的研究生、科研人员或从事能源互联网、微电网调度相关工作的工程师;适合希望深入理解分布式优化算法在能源共享中应用的研究者。; 使用场景及目标:①掌握纳什博弈在多主体能源系统中的建模方法;②理解ADMM算法在分布式优化中的实现机制与收敛特性;③复现并拓展高水平SCI论文中的能源共享优化模型;④为微电网调度、能源市场机制设计等课题提供算法支持与代码参考。; 阅读建议:建议结合文档提供的Matlab代码逐段调试运行,深入理解变量设置、迭代流程与收敛判断逻辑;同时可延伸至其他分布式优化场景(如虚拟电厂、综合能源系统)进行模型迁移与改进。【SCI复现】基于纳什博弈和ADMM的多微网主体能源共享研究(Matlab代码实现)
内容概要:本文介绍了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷数据进行分解,降低序列复杂度并提取不同频率特征;随后采用SSA优化LSSVM的关键参,提升预测精度;最后将优化后的LSSVM用于各模态分量的预测并叠加得到最终负荷预测结果。该方法有效提高了负荷预测的准确性与稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合人群:具备一定电力系统背景和Matlab编程能力的高校研究生、科研【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现)人员及从事能源预测相关工作的工程技术人员;熟悉机器学习算法并希望将其应用于实际负荷预测问题的研究者。; 使用场景及目标:①解决传统负荷预测模型精度不足、易受噪声干扰的问题;②实现对多影响因素(如温度、历史负荷等)耦合作用下的电力负荷高精度预测;③为智能电网调度、能源管理及电力市场决策提供可靠的数据支撑; 阅读建议:建议读者结合提供的Matlab代码逐步复现整个预测流程,重点关注VMD参设置、SSA优化机制与LSSVM建模环节,同时可尝试替换数据集或引入其他优化算法进行对比实验,以深入掌握该混合预测模型的设计思路与调参技巧。
内容概要:本文围绕无槽永磁电机的磁场解析问题展开,指出传统的原始场公式(RFF)在不同电机几何形状下可能引入显著误差,为此提出一种更为精确的解析解法,并通过Matlab代码实现验证。该方法旨在提高无槽永磁电机磁场计算的准确性,适用于需要高精度建模的研究与工程应用场景。文中还提及多个相关科研方向和技术实现,涵盖无人机仿真控制、电力系统优化、路径规划、新能源系统调度、负荷与可再生能源预测等多个前沿领域,均配有Matlab或Python代码实现支持。; 适合人群:具备一定电机理论基础和编程能力,从事电气工程、自动化、【无槽永磁电机解】磁场问题的直接场解,称为原始场公式(RFF),在整个无槽永磁电机领域中可能导致显著的误差,这些误差随着机器几何形状的变化而显著不同,提出了一种达到解析解(Matlab代码实现)新能源系统、智能控制等领域研究的科研人员及研究生;熟悉Matlab/Simulink或Python的开发人员。; 使用场景及目标:①改进无槽永磁电机磁场计算精度,替代存在误差的RFF方法;②为电机设计、控制系统仿真、高性能驱动开发提供可靠模型基础;③拓展至多物理场耦合分析与优化设计。; 阅读建议:建议结合提供的Matlab代码深入理解解析解的推导过程,对比RFF与新方法在不同几何参下的误差表现,强化理论与实践结合;同时可参考文中列出的其他研究主题及相关代码资源,拓展科研思路与技术实现路径。
内容概要:本文围绕“并_离网风光互补制氢合成氨系统”的容量配置与调度优化问题展开研究,基于Cplex求解器,利用Matlab代码实现对系统多变量、多约束条件下的优化建模与仿真分析。重点探讨风能、光伏、电解水制氢、氢气储存及合成氨工艺之间的能量耦合关系,构建综合能源系统的学模型,实现对设备容量的最优配置与运行调度的精细化管理。文中提供了完整的Matlab代码实现流程,支持论文结果的复现,并结合实际数据验证模型的有效性与实用性。; 适合人群:具备一定电力系统、能源系统或运筹优化背景的研究生、科研【复现】并_离网风光互补制氢合成氨系统容量-调度优化分析【Cplex求解】(Matlab代码实现)人员及工程技术人员,熟悉Matlab编程与学建模者更佳;适用于从事新能源综合利用、氢能系统设计等相关领域的研究人员。; 使用场景及目标:①用于复现高水平期刊中关于风光制氢合成氨系统的优化研究成果;②支撑科研工作中对综合能源系统建模与优化求解的学习与开发;③为实际项目中的氢能系统规划提供理论依据和技术工具支持。; 阅读建议:建议读者结合提供的网盘资源下载完整代码与数据,按照文档目录顺序逐步复现模型构建、求解与仿真过程,重点关注目标函设计、约束条件设定及Cplex调用方法,同时可扩展至Python版本对比学习,深化对优化算法与能源系统耦合机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值