今天上网搜索关于红黑树的资料时,发现一种新的平衡二叉树(SBT),据说各方面性能很好,先摘录在此,以后再细看。
Size Balanced Tree(SBT)是一种平衡二叉查找树。它的论文由中国广东中山纪念中学的陈启峰于2006年底完成,并在Winter Camp 2007中发表。由于SBT的拼写很容易找到中文谐音,它常被中国的OIer们戏称为“傻X树”、“Super BT”等。但它的性能并不SB,编写起来也并不BT。恰恰相反,SBT易于实现,且据陈启峰论文中所言,“这是目前为止速度最快的高级二叉搜索树”。它能在O(logn)的时间内完成所有BST的相关操作。而且由于SBT赖以保持平衡的是Size域而不是其他“无用”的域,它可以很方便地实现动态顺序统计中的select和rank。
目录[隐藏] |
[编辑] 性质
Size Balanced Tree(SBT)是一种通过大小(Size)域来保持平衡的二叉搜索树,它也因此得名。它总是满足:
对于SBT的每一个结点 t:
- 性质(a) s[right[t]]≥s[left[left[t]]], s[right[left[t]]]
- 性质(b) s[left[t]]≥s[right[right[t]]], s[left[right[t]]]
即每棵子树的大小不小于其兄弟的子树大小。
图1
如图(圈代表结点,三角代表SBT,下同):
- s[R] ≥ s[A] , s[B]
- s[L] ≥ s[C] , s[D]
[编辑] 旋转
SBT的旋转(Rotations)与其他高级BST相同。它是下面提到的Maintain操作的基础。
图2
[编辑] 左旋转
Left-Rotate (t) 1 k ← right[t] 2 right[t] ← left[k] 3 left[k] ← t 4 s[k] ← s[t] 5 s[t] ← s[left[t]] + s[right[t]] + 1 6 t ← k
[编辑] 右旋转
Right-Rotate(t) 1 k ← left[t] 2 left[t] ← right[k] 3 right[k] ← t 4 s[k] ← s[t] 5 s[t] ← s[left[t]] + s[right[t]] + 1 6 t ← k
[编辑] 保持性质(Maintain)
当我们插入或删除一个结点后,SBT的大小就发生了改变。这种改变有可能导致性质(a)或(b)被破坏。这时,我们需要用Maintain操作来修复这棵树。Maintain操作是SBT中最具活力的一个独特过程;Maintain(T)用于修复以T为根的 SBT。调用Maintain(T)的前提条件是T的子树都已经是SBT了。
我们需要讨论的有4种情况。由于性质a和性质b是对称的,所以我们仅仅详细的讨论性质a。
- 第一种情况:s[left[left[t]]>s[right[t]]
图3(同图1) - 第二种情况:s[right[left[t]]>s[right[t]]
图5 - 第三种情况:s[right[right[t]]>s[left[t]]
与情况1对称。 - 第四种情况:s[left[right[t]]>s[left[t]]
与情况2对称。
通过前面的分析,很容易写出一个普通的Maintain。
Maintain (t) 01 If s[left[left[t]]>s[right[t]] then //case1 02 Right-Rotate(t) 03 Maintain(right[t]) 04 Maintain(t) 05 Exit 06 If s[right[left[t]]>s[right[t]] then //case2 07 Left-Rotate(left[t]) 08 Right-Rotate(t) 09 Maintain(left[t]) 10 Maintain(right[t]) 11 Maintain(t) 12 Exit 13 If s[right[right[t]]>s[left[t]] then //case1' 14 Left-Rotate(t) 15 Maintain(left[t]) 16 Maintain(t) 17 Exit 18 If s[left[right[t]]>s[left[t]] then //case2' 19 Right-Rotate(right[t]) 20 Left-Rotate(t) 21 Maintain(left[t]) 22 Maintain(right[t]) 23 Maintain(t)
前面的标准过程的伪代码有一点复杂和缓慢。通常我们可以保证性质a和性质b的满足,因此我们只需要检查情况1和情况2或者情况3和情况4,这样可以提高速度。所以在那种情况下,我们需要增加一个布尔(boolean)型变量:flag,来避免毫无意义的判断。如果flag是false,那么检查情况1和情况2;否则检查情况3和情况4。
Maintain (t,flag) 01 If flag=false then 02 If s[left[left[t]]>s[right[t]] then //case1 03 Right-Rotate(t) 04 Else 05 If s[right[left[t]]>s[right[t]] then //case2 06 Left-Rotate(left[t]) 07 Right-Rotate(t) 08 Else //needn’t repair 09 Exit 10 Else 11 If s[right[right[t]]>s[left[t]] then //case1' 12 Left-Rotate(t) 13 Else 14 If s[left[right[t]]>s[left[t]] then //case2' 15 Right-Rotate(right[t]) 16 Left-Rotate(t) 17 Else //needn’t repair 18 Exit 19 Maintain(left[t],false) //repair the left subtree 20 Maintain(right[t],true) //repair the right subtree 21 Maintain(t,false) //repair the whole tree 22 Maintain(t,true) //repair the whole tree
为什么Maintain(left[t],true)和Maintain(right[t],false)被省略了呢?您可以在陈启峰论文第六部分的分析中找到答案。
其他可以从论文中获得的信息:每次SBT后树的总深度递减的证明;Maintain的平摊运行时间是O(1)的证明(也就是说你不必担心Maintain这个递归过程是否会永不停止)等。
[编辑] 基本操作
[编辑] 查找
SBT的查找操作与普通BST完全相同。下面的过程将返回指向目标节点的指针。
Search(t,k) 1 if x=NIL or k=key[t] 2 then return x 3 if k<key[x] 4 then return Search(left[x],k) 5 else return Search(right[x],k)
[编辑] 取大/取小
由于SBT本身已经维护了size,因此这两项可用Select操作完成。
[编辑] 后继
SBT的后继操作与普通BST完全相同。
[编辑] 前趋
SBT的前趋操作与普通BST完全相同。它与上面的后继操作对称。
[编辑] 插入
SBT的插入操作很简单。它仅仅比普通BST的多出了一个Maintain操作和对s的简单维护。下面这个过程将一个节点v插入SBT中。
Insert (t,v) 1 If t=0 then 2 t ← v 3 Else 4 s[t] ← s[t]+1 5 If v<key[t] then 6 Simple-Insert(left[t],v) 7 Else 8 Simple-Insert(right[t],v) 9 Maintain(t,v≥key[t])
[编辑] 删除
与普通维护size域的BST删除相同。
关于无需Maintain的说明by sqybi:
在删除之前,可以保证整棵树是一棵SBT。当删除之后,虽然不能保证这棵树还是SBT,但是这时整棵树的最大深度并没有改变,所以时间复杂度也不会增加。这时,Maintain就显得是多余的了。
[编辑] 动态顺序统计操作
由于SBT本来就是靠着size域来维持平衡的,当我们进行动态顺序统计操作时,我们就无需去“额外”维护一个size域来进行数据结构的扩张。这样,以下操作就与其他高级BST扩张后的动态顺序统计操作完全一样了。
[编辑] 检索具有给定排序的元素
下面这个过程将返回一个指向以x为根的子树中包含第i小关键字的节点的指针。
Select(x,i) 1 r ← size[left[x]] + 1 2 if(i=r) 3 then return x 4 else if i<r 5 then return Select(left[x],r) 6 else return Select(right[x],i-r)
[编辑] 求元素的秩
SBT的rank操作与普通BST完全相同。
[编辑] 性能分析
SBT的高度是O(logn),Maintain是O(1),所有主要操作都是O(logn)。
[编辑] 源码
[编辑] 参考资料
- [Size Balanced Tree], 陈启峰
- Size Balanced Tree, 陈启峰, Translated by BambooLeaf
- Introduction to Algorithms