题目:求
1+2+
…
+n
,要求不能使用乘除法、
for
、
while
、
if
、
else
、
switch
、
case
等关键字以及条件判断语句(
A?B:C
)。
分析:这道题没有多少实际意义,因为在软件开发中不会有这么变态的限制。但这道题却能有效地考查发散思维能力,而发散思维能力能反映出对编程相关技术理解的深刻程度。
通常求 1+2+ … +n 除了用公式 n(n+1)/2 之外,无外乎循环和递归两种思路。由于已经明确限制 for 和 while 的使用,循环已经不能再用了。同样,递归函数也需要用 if 语句或者条件判断语句来判断是继续递归下去还是终止递归,但现在题目已经不允许使用这两种语句了。
我们仍然围绕循环做文章。循环只是让相同的代码执行 n 遍而已,我们完全可以不用 for 和 while 达到这个效果。比如定义一个类,我们 new 一含有 n 个这种类型元素的数组,那么该类的构造函数将确定会被调用 n 次。我们可以将需要执行的代码放到构造函数里。如下代码正是基于这个思路:
class Temp
{
public:
Temp() { ++ N; Sum += N; }
static void Reset() { N = 0; Sum = 0; }
static int GetSum() { return Sum; }
private:
static int N;
static int Sum;
};
int Temp::N = 0;
int Temp::Sum = 0;
int solution1_Sum( int n)
{
Temp::Reset();
Temp *a = new Temp[n];
delete []a;
a = 0;
return Temp::GetSum();
}
我们同样也可以围绕递归做文章。既然不能判断是不是应该终止递归,我们不妨定义两个函数。一个函数充当递归函数的角色,另一个函数处理终止递归的情况,我们需要做的就是在两个函数里二选一。从二选一我们很自然的想到布尔变量,比如 ture ( 1 )的时候调用第一个函数, false ( 0 )的时候调用第二个函数。那现在的问题是如和把数值变量 n 转换成布尔值。如果对 n 连续做两次反运算,即 !!n ,那么非零的 n 转换为 true , 0 转换为 false 。有了上述分析,我们再来看下面的代码:
class A;
A* Array[2];
class A
{
public:
virtual int Sum ( int n) { return 0; }
};
class B: public A
{
public:
virtual int Sum ( int n) { return Array[!!n]->Sum(n-1)+n; }
};
int solution2_Sum( int n)
{
A a;
B b;
Array[0] = &a;
Array[1] = &b;
int value = Array[1]->Sum(n);
return value;
}
这种方法是用虚函数来实现函数的选择。当 n 不为零时,执行函数 B::Sum ;当 n 为 0 时,执行 A::Sum 。我们也可以直接用函数指针数组,这样可能还更直接一些:
typedef int (*fun)( int );
int solution3_f1( int i)
{
return 0;
}
int solution3_f2( int i)
{
fun f[2]={solution3_f1, solution3_f2};
return i+f[!!i](i-1);
}
另外我们还可以让编译器帮我们来完成类似于递归的运算,比如如下代码:
template < int n> struct solution4_Sum
{
enum Value { N = solution4_Sum<n - 1>::N + n};
};
template <> struct solution4_Sum<1>
{
enum Value { N = 1};
};
solution4_Sum<100>::N 就是 1+2+...+100 的结果。当编译器看到 solution4_Sum<100> 时,就是为模板类 solution4_Sum 以参数 100 生成该类型的代码。但以 100 为参数的类型需要得到以 99 为参数的类型,因为 solution4_Sum<100>::N=solution4_Sum<99>::N+100 。这个过程会递归一直到参数为 1 的类型,由于该类型已经显式定义,编译器无需生成,递归编译到此结束。由于这个过程是在编译过程中完成的,因此要求输入 n 必须是在编译期间就能确定,不能动态输入。这是该方法最大的缺点。而且编译器对递归编译代码的递归深度是有限制的,也就是要求 n 不能太大。
大家还有更多、更巧妙的思路吗?欢迎讨论 ^_^
分析:这道题没有多少实际意义,因为在软件开发中不会有这么变态的限制。但这道题却能有效地考查发散思维能力,而发散思维能力能反映出对编程相关技术理解的深刻程度。
通常求 1+2+ … +n 除了用公式 n(n+1)/2 之外,无外乎循环和递归两种思路。由于已经明确限制 for 和 while 的使用,循环已经不能再用了。同样,递归函数也需要用 if 语句或者条件判断语句来判断是继续递归下去还是终止递归,但现在题目已经不允许使用这两种语句了。
我们仍然围绕循环做文章。循环只是让相同的代码执行 n 遍而已,我们完全可以不用 for 和 while 达到这个效果。比如定义一个类,我们 new 一含有 n 个这种类型元素的数组,那么该类的构造函数将确定会被调用 n 次。我们可以将需要执行的代码放到构造函数里。如下代码正是基于这个思路:
class Temp
{
public:
Temp() { ++ N; Sum += N; }
static void Reset() { N = 0; Sum = 0; }
static int GetSum() { return Sum; }
private:
static int N;
static int Sum;
};
int Temp::N = 0;
int Temp::Sum = 0;
int solution1_Sum( int n)
{
Temp::Reset();
Temp *a = new Temp[n];
delete []a;
a = 0;
return Temp::GetSum();
}
我们同样也可以围绕递归做文章。既然不能判断是不是应该终止递归,我们不妨定义两个函数。一个函数充当递归函数的角色,另一个函数处理终止递归的情况,我们需要做的就是在两个函数里二选一。从二选一我们很自然的想到布尔变量,比如 ture ( 1 )的时候调用第一个函数, false ( 0 )的时候调用第二个函数。那现在的问题是如和把数值变量 n 转换成布尔值。如果对 n 连续做两次反运算,即 !!n ,那么非零的 n 转换为 true , 0 转换为 false 。有了上述分析,我们再来看下面的代码:
class A;
A* Array[2];
class A
{
public:
virtual int Sum ( int n) { return 0; }
};
class B: public A
{
public:
virtual int Sum ( int n) { return Array[!!n]->Sum(n-1)+n; }
};
int solution2_Sum( int n)
{
A a;
B b;
Array[0] = &a;
Array[1] = &b;
int value = Array[1]->Sum(n);
return value;
}
这种方法是用虚函数来实现函数的选择。当 n 不为零时,执行函数 B::Sum ;当 n 为 0 时,执行 A::Sum 。我们也可以直接用函数指针数组,这样可能还更直接一些:
typedef int (*fun)( int );
int solution3_f1( int i)
{
return 0;
}
int solution3_f2( int i)
{
fun f[2]={solution3_f1, solution3_f2};
return i+f[!!i](i-1);
}
另外我们还可以让编译器帮我们来完成类似于递归的运算,比如如下代码:
template < int n> struct solution4_Sum
{
enum Value { N = solution4_Sum<n - 1>::N + n};
};
template <> struct solution4_Sum<1>
{
enum Value { N = 1};
};
solution4_Sum<100>::N 就是 1+2+...+100 的结果。当编译器看到 solution4_Sum<100> 时,就是为模板类 solution4_Sum 以参数 100 生成该类型的代码。但以 100 为参数的类型需要得到以 99 为参数的类型,因为 solution4_Sum<100>::N=solution4_Sum<99>::N+100 。这个过程会递归一直到参数为 1 的类型,由于该类型已经显式定义,编译器无需生成,递归编译到此结束。由于这个过程是在编译过程中完成的,因此要求输入 n 必须是在编译期间就能确定,不能动态输入。这是该方法最大的缺点。而且编译器对递归编译代码的递归深度是有限制的,也就是要求 n 不能太大。
大家还有更多、更巧妙的思路吗?欢迎讨论 ^_^