求1+2+...+n(很多限制条件)

题目:求 1+2+ +n ,要求不能使用乘除法、 for while if else switch case 等关键字以及条件判断语句( A?B:C )。
分析:这道题没有多少实际意义,因为在软件开发中不会有这么变态的限制。但这道题却能有效地考查发散思维能力,而发散思维能力能反映出对编程相关技术理解的深刻程度。
通常求 1+2+ +n 除了用公式 n(n+1)/2 之外,无外乎循环和递归两种思路。由于已经明确限制 for while 的使用,循环已经不能再用了。同样,递归函数也需要用 if 语句或者条件判断语句来判断是继续递归下去还是终止递归,但现在题目已经不允许使用这两种语句了。
我们仍然围绕循环做文章。循环只是让相同的代码执行 n 遍而已,我们完全可以不用 for while 达到这个效果。比如定义一个类,我们 new 一含有 n 个这种类型元素的数组,那么该类的构造函数将确定会被调用 n 次。我们可以将需要执行的代码放到构造函数里。如下代码正是基于这个思路:
class Temp
{
public:
       Temp() { ++ N; Sum += N; }
       static void Reset() { N = 0; Sum = 0; }
       static int GetSum() { return Sum; }
private:
       static int N;
       static int Sum;
};

int Temp::N = 0;
int Temp::Sum = 0;
int solution1_Sum(
int n)
{
       Temp::Reset();

       Temp *a = new Temp[n];
       delete []a;
       a = 0;

       return Temp::GetSum();
}

我们同样也可以围绕递归做文章。既然不能判断是不是应该终止递归,我们不妨定义两个函数。一个函数充当递归函数的角色,另一个函数处理终止递归的情况,我们需要做的就是在两个函数里二选一。从二选一我们很自然的想到布尔变量,比如 ture 1 )的时候调用第一个函数, false 0 )的时候调用第二个函数。那现在的问题是如和把数值变量 n 转换成布尔值。如果对 n 连续做两次反运算,即 !!n ,那么非零的 n 转换为 true 0 转换为 false 。有了上述分析,我们再来看下面的代码:
class A;
A* Array[2];

class A
{
public:
       virtual int Sum ( int n) { return 0; }
};
class B:
public A
{
public:
       virtual int Sum ( int n) { return Array[!!n]->Sum(n-1)+n; }
};
int solution2_Sum(
int n)
{
       A a;
       B b;
       Array[0] = &a;
       Array[1] = &b;

       int value = Array[1]->Sum(n);
       return value;
}

这种方法是用虚函数来实现函数的选择。当 n 不为零时,执行函数 B::Sum ;当 n 0 时,执行 A::Sum 。我们也可以直接用函数指针数组,这样可能还更直接一些:
typedef int (*fun)( int );
int solution3_f1(
int i)
{
       return 0;
}
int solution3_f2(
int i)
{
       fun f[2]={solution3_f1, solution3_f2};
       return i+f[!!i](i-1);
}

另外我们还可以让编译器帮我们来完成类似于递归的运算,比如如下代码:
template < int n> struct solution4_Sum
{
       enum Value { N = solution4_Sum<n - 1>::N + n};
};


template <> struct solution4_Sum<1>
{
       enum Value { N = 1};
};

solution4_Sum<100>::N 就是 1+2+...+100 的结果。当编译器看到 solution4_Sum<100> 时,就是为模板类 solution4_Sum 以参数 100 生成该类型的代码。但以 100 为参数的类型需要得到以 99 为参数的类型,因为 solution4_Sum<100>::N=solution4_Sum<99>::N+100 。这个过程会递归一直到参数为 1 的类型,由于该类型已经显式定义,编译器无需生成,递归编译到此结束。由于这个过程是在编译过程中完成的,因此要求输入 n 必须是在编译期间就能确定,不能动态输入。这是该方法最大的缺点。而且编译器对递归编译代码的递归深度是有限制的,也就是要求 n 不能太大。
大家还有更多、更巧妙的思路吗?欢迎讨论 ^_^

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值