程序员面试题精选(10)-在排序数组中查找和为给定值的两个数字
题目:输入一个已经按升序排序过的数组和一个数字,在数组中查找两个数,使得它们的和正好是输入的那个数字。要求时间复杂度是 O(n) 。如果有多对数字的和等于输入的数字,输出任意一对即可。
例如输入数组 1 、 2 、 4 、 7 、 11 、 15 和数字 15 。由于 4+11=15 ,因此输出 4 和 11 。
分析:如果我们不考虑时间复杂度,最简单想法的莫过去先在数组中固定一个数字,再依次判断数组中剩下的 n-1 个数字与它的和是不是等于输入的数字。可惜这种思路需要的时间复杂度是 O(n2) 。
我们假设现在随便在数组中找到两个数。如果它们的和等于输入的数字,那太好了,我们找到了要找的两个数字;如果小于输入的数字呢?我们希望两个数字的和再大一点。由于数组已经排好序了,我们是不是可以把较小的数字的往后面移动一个数字?因为排在后面的数字要大一些,那么两个数字的和也要大一些,就有可能等于输入的数字了;同样,当两个数字的和大于输入的数字的时候,我们把较大的数字往前移动,因为排在数组前面的数字要小一些,它们的和就有可能等于输入的数字了。
我们把前面的思路整理一下:最初我们找到数组的第一个数字和最后一个数字。当两个数字的和大于输入的数字时,把较大的数字往前移动;当两个数字的和小于数字时,把较小的数字往后移动;当相等时,打完收工。这样扫描的顺序是从数组的两端向数组的中间扫描。
问题是这样的思路是不是正确的呢?这需要严格的数学证明。感兴趣的读者可以自行证明一下。
参考代码:
///
// Find two numbers with a sum in a sorted array
// Output: ture is found such two numbers, otherwise false
///
bool FindTwoNumbersWithSum
(
int data[], // a sorted array
unsigned int length, // the length of the sorted array
int sum, // the sum
int & num1, // the first number, output
int & num2 // the second number, output
)
{
bool found = false ;
if (length < 1)
return found;
int ahead = length - 1;
int behind = 0;
while (ahead > behind)
{
long long curSum = data[ahead] + data[behind];
// if the sum of two numbers is equal to the input
// we have found them
if (curSum == sum)
{
num1 = data[behind];
num2 = data[ahead];
found = true ;
break ;
}
// if the sum of two numbers is greater than the input
// decrease the greater number
else if (curSum > sum)
ahead --;
// if the sum of two numbers is less than the input
// increase the less number
else
behind ++;
}
return found;
}
扩展:如果输入的数组是没有排序的,但知道里面数字的范围,其他条件不变,如和在 O(n) 时间里找到这两个数字?
题目:输入一个已经按升序排序过的数组和一个数字,在数组中查找两个数,使得它们的和正好是输入的那个数字。要求时间复杂度是 O(n) 。如果有多对数字的和等于输入的数字,输出任意一对即可。
例如输入数组 1 、 2 、 4 、 7 、 11 、 15 和数字 15 。由于 4+11=15 ,因此输出 4 和 11 。
分析:如果我们不考虑时间复杂度,最简单想法的莫过去先在数组中固定一个数字,再依次判断数组中剩下的 n-1 个数字与它的和是不是等于输入的数字。可惜这种思路需要的时间复杂度是 O(n2) 。
我们假设现在随便在数组中找到两个数。如果它们的和等于输入的数字,那太好了,我们找到了要找的两个数字;如果小于输入的数字呢?我们希望两个数字的和再大一点。由于数组已经排好序了,我们是不是可以把较小的数字的往后面移动一个数字?因为排在后面的数字要大一些,那么两个数字的和也要大一些,就有可能等于输入的数字了;同样,当两个数字的和大于输入的数字的时候,我们把较大的数字往前移动,因为排在数组前面的数字要小一些,它们的和就有可能等于输入的数字了。
我们把前面的思路整理一下:最初我们找到数组的第一个数字和最后一个数字。当两个数字的和大于输入的数字时,把较大的数字往前移动;当两个数字的和小于数字时,把较小的数字往后移动;当相等时,打完收工。这样扫描的顺序是从数组的两端向数组的中间扫描。
问题是这样的思路是不是正确的呢?这需要严格的数学证明。感兴趣的读者可以自行证明一下。
参考代码:
///
// Find two numbers with a sum in a sorted array
// Output: ture is found such two numbers, otherwise false
///
bool FindTwoNumbersWithSum
(
int data[], // a sorted array
unsigned int length, // the length of the sorted array
int sum, // the sum
int & num1, // the first number, output
int & num2 // the second number, output
)
{
bool found = false ;
if (length < 1)
return found;
int ahead = length - 1;
int behind = 0;
while (ahead > behind)
{
long long curSum = data[ahead] + data[behind];
// if the sum of two numbers is equal to the input
// we have found them
if (curSum == sum)
{
num1 = data[behind];
num2 = data[ahead];
found = true ;
break ;
}
// if the sum of two numbers is greater than the input
// decrease the greater number
else if (curSum > sum)
ahead --;
// if the sum of two numbers is less than the input
// increase the less number
else
behind ++;
}
return found;
}
扩展:如果输入的数组是没有排序的,但知道里面数字的范围,其他条件不变,如和在 O(n) 时间里找到这两个数字?