【链接】 我是链接,点我呀:)
【题意】
【题解】
设每个人做第一题、第二题的分数分别为x,y
我们先假设没有仇视关系。
即每两个人都能进行一次训练。
那么
对于第i个人。
考虑第j个人对它的贡献
如果xi+yj<yi+xj
即xi-yi<xj-yj
也就是说,如果我们以x-y作为关键字升序排序的话。
那么在第i个人右边的所有人。他的xj-yj的值都大于xi-yi
那么这n-i个人对第i个人的贡献就都是xi+yj
可以用一个前缀和,轻松搞定区间的x,y和。
xi+yj>yi+xj的话。
情况类似。
最后对于有仇敌关系的(i,j)的话。
第i个人和第j个人的贡献都减去min(xi+yj,yi+xj)即可。
【代码】
#include <bits/stdc++.h>
#define ll long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
using namespace std;
const int N = 3e5;
struct abc{
int x,y,id;
bool operator < (const abc &b) {
return (x-y)<(b.x-b.y);
}
};
int n,m;
ll ans[N+10];
ll prex[N+10],prey[N+10];
abc a[N+10],b[N+10];
int main(){
#ifdef ccy
freopen("rush.txt","r",stdin);
#endif
scanf("%d%d",&n,&m);
rep1(i,1,n) {
scanf("%d%d",&a[i].x,&a[i].y);
a[i].id = i;
}
rep1(i,1,n) b[i] = a[i];
sort(a+1,a+1+n);
rep1(i,1,n){
prex[i]+=prex[i-1];
prey[i]+=prey[i-1];
prex[i]+=a[i].x;
prey[i]+=a[i].y;
}
//xi+yj<yi+xj
//xi-yi<=xj-yj
//xi+yj>yi+xj
//xi-yi>xj-yj
rep1(i,1,n){
ans[a[i].id] += 1LL*(i-1)*a[i].y+prex[i-1]-prex[0];
ans[a[i].id] += 1LL*(n-i)*a[i].x+prey[n]-prey[i];
}
rep1(i,1,m){
int x,y;
scanf("%d%d",&x,&y);
ans[x]-=min(b[x].x+b[y].y,b[x].y+b[y].x);
ans[y]-=min(b[x].x+b[y].y,b[x].y+b[y].x);
}
rep1(i,1,n){
printf("%lld ",ans[i]);
}
return 0;
}