【链接】 我是链接,点我呀:)
【题意】
让你找一段连续的区间
使得这一段区间最多修改一个数字就能变成严格上升的区间。
问你这个区间的最长长度
【题解】
dp[0][i]表示以i为结尾的最长严格上升长度
dp[1][i]表示以i作为开头的最长严格上升长度.
然后我们枚举那个改变的位置在什么地方就可以了。
别忘了不改变的那种情况。
可以一起做。
【代码】
import java.io.*;
import java.util.*;
public class Main {
static InputReader in;
static PrintWriter out;
public static void main(String[] args) throws IOException{
//InputStream ins = new FileInputStream("E:\\rush.txt");
InputStream ins = System.in;
in = new InputReader(ins);
out = new PrintWriter(System.out);
//code start from here
new Task().solve(in, out);
out.close();
}
static int N = (int)1e5;
static class Task{
public void solve(InputReader in,PrintWriter out) {
int n;
int []a = new int [N+10];
int [][]f =new int[2][N+10];
n = in.nextInt();
for (int i = 1;i <= n;i++) a[i] = in.nextInt();
for (int i = 1;i <= n;i++) {
f[0][i] = 1;
if (i-1>=1 && a[i]>a[i-1]) {
f[0][i] = f[0][i-1] + 1;
}
}
for (int i = n;i >= 1;i--) {
f[1][i] = 1;
if (i+1<=n && a[i]<a[i+1])
f[1][i] = f[1][i+1]+1;
}
int MI = -(int)1e9-1,MA = (int)1e9 + 1;
int ans = 0;
for (int i = 1;i <= n;i++) {
int x,y;
x = MI;y = MA;
if (i-1>=1) x = a[i-1];
if (i+1<=n) y = a[i+1];
if (y>x+1) {
ans = Math.max(ans, f[0][i-1]+f[1][i+1]+1);
}else {
ans = Math.max(ans, Math.max(f[0][i-1]+1, f[1][i+1]+1));
}
ans = Math.max(ans, f[0][i]);
ans = Math.max(ans, f[1][i]);
}
out.println(ans);
}
}
static class InputReader{
public BufferedReader br;
public StringTokenizer tokenizer;
public InputReader(InputStream ins) {
br = new BufferedReader(new InputStreamReader(ins));
tokenizer = null;
}
public String next(){
while (tokenizer==null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(br.readLine());
}catch(IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}