【链接】 我是链接,点我呀:)
【题意】
题意
【题解】
把数组排个序,
显然优先用大的且小于枚举的数字a[i]的数字变成a[i]
那么肯定有一个范围j.
然后a[j~i-1]都能在k花费以内变成a[i]
然后考虑i++
这个时候肯定最好的情况还是a[j~i]都能变成a[i]
(至少j不会变小,因为数字a[i]都变大了,再往左的话,花费肯定超过k了)
所以根据上面的推理,维护一个最左的端点j吧)
【代码】
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 1e5;
int n,k;
ll a[N+10],sum;
int main(){
ios::sync_with_stdio(0),cin.tie(0);
cin >>n >> k;
for (int i = 1;i <= n;i++) cin >> a[i];
sort(a+1,a+1+n);
int l = 1;sum = 0;
int anslen = 0,num;
for (int i = 1;i <= n;i++){
sum = sum + a[i];
while(1LL*(i-l+1)*a[i]-sum>k) {
sum-=a[l];
l++;
}
if ( (i-l+1)>anslen){
anslen = (i-l+1);
num = a[i];
}
}
cout<<anslen<<" "<<num<<endl;
return 0;
}