【codeforces 743E】Vladik and cards

【题目链接】:http://codeforces.com/problemset/problem/743/E

【题意】

给你n个数字;
这些数字都是1到8范围内的整数;
然后让你从中选出一个最长的子列;
要求这个子列中各个数字出现的次数的差的绝对值都不超过1;
且如果是相同的数字的话:
都是连在一起的(不会有分散的数字);
问你这个最长的序列的长度是多少;

【题解】

二分每个数字至少出现的次数x,(即最少出现x次,当然也可以是x+1次);
(单调性是显然的吧,因为如果每个数字出现5次是可行的话,那么3次肯定也是可以的,二分是正确的);
然后判断这样的序列存不存在;
可以一个数字一个数字的判断;
对于每个数字而言.
只有两种情况.在这个序列中,或者不在;
(想要加入到这个序列中,
则必须之前没有出现过,
因为题目有要求不能出现分散的块;
如果之前没有出现过;
则加入到这个序列中,
枚举它要出现x次,还是x+1次,
则可以写个lower_bound快速判断它之后的
第x个该数字(或是x+1)的位置,然后再从那个位置后一位开始,
继续选择,同时记录刚才那个数字已经加入到序列中;
(同时序列的长度递增x或是x+1)
当然也可以不选这个数字,则往后移动一位;
到了第n+1个位置的时候,看看是不是所有的8个数字都选了;
是的话则返回找到了一个序列,否则返回一个很小的值就好;
这些都用记忆化搜索写吧.
开个
f[i][s],表示当前扫描到第i个位置,当前选择的数字的状态为s;(二进制对应);
的最大序列长度;
bo[i][s]记录这个状态有没有找过.
i最大1000,s最大2^8=256
状态这么少,怎么样都不会超啦;
然后如果能找到x的序列,就尝试把x搞大一点,继续找;
然后x为0的情况没办法在做记搜的时候体现出来;
得自己一开始的时候预处理出ans

【Number Of WA

0

【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0),cin.tie(0)

typedef pair<int,int> pii;
typedef pair<LL,LL> pll;

const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 1100;
const int MM = 1<<8;
const int INF = -0x3f3f3f3f;

int n,a[N],mark,ans,f[N][MM+10];
bool bo[N][MM+10];
vector <int> v[10];

int dfs(int i,int s,int x)
{
    if (bo[i][s]) return f[i][s];
    bo[i][s] = true;
    if (i>n)
    {
        if (s==MM-1)
        {
            return f[i][s] = 0;
        }
        else
            return f[i][s] =  INF;
    }
    int ret = INF;
    if (!((s>>(a[i]-1))&1))
    {
        int pos = lower_bound(v[a[i]].begin(),v[a[i]].end(),i)-v[a[i]].begin();
        if (pos+x-1<int(v[a[i]].size()))
        {
            ret = max(ret,x+dfs(v[a[i]][pos+x-1]+1,s|(1<<(a[i]-1)),x));
        }
        if (pos+x<int(v[a[i]].size()))
        {
            ret = max(ret,x+1+dfs(v[a[i]][pos+x]+1,s|(1<<(a[i]-1)),x));
        }
    }
    f[i][s] = max(ret,dfs(i+1,s,x));
    return f[i][s];
}

bool ok(int x)
{
    ms(f,INF);
    ms(bo,0);
    int ret = INF;
    ret = max(ret,dfs(1,0,x));
    ans = max(ans,ret);
    if (ret>=0)
        return 1;
    else
        return 0;
}

int main()
{
    //Open();
    Close();//scanf,puts,printf not use
    //init??????
    cin >> n;
    rep1(i,1,n)
    {
        cin >> a[i];
        if(!((mark>>a[i])&1))
        {
            mark|=(1<<a[i]);
            ans++;
        }
        v[a[i]].pb(i);
    }
    int l = 1,r = n/8;
    while (l<=r)
    {
        int mid = (l+r)>>1;
        if (ok(mid))
            l = mid+1;
        else
            r = mid-1;
    }
    cout << ans << endl;
    return 0;
}

转载于:https://www.cnblogs.com/AWCXV/p/7626314.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值