BZOJ 1878: [SDOI2009]HH的项链

题目描述

num[i]表示在[l,r]内数字i的个数 

当区间变为[l±1,r]或,[l,r±1]的时候,num[i]由0变为1或由1变为0时答案才会变化 

#include<complex>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=5e4+7;
struct node{
    int l,r,id;
}q[N<<2];
int n,m;
int ans[N<<2],a[N],num[N*20],pos[N];
int qread()
{
    int x=0;
    char ch=getchar();
    while(ch<'0' || ch>'9')ch=getchar();
    while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x;
}
bool cmp(const node &a,const node &b)
{
    if(pos[a.l]==pos[b.l])return a.r<b.r;
    return pos[a.l]<pos[b.l];
}
void change(int &tot,int id,int add)
{
    if(add)
    {
        if(!num[a[id]])
            tot++;
        num[a[id]]++;
        return;
    }
    num[a[id]]--;
    if(!num[a[id]])tot--;
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        a[i]=qread();
    scanf("%d",&m);
    for(int i=1;i<=m;i++)
    {
        q[i].l=qread();q[i].r=qread();
        q[i].id=i;
    }
    int tmp=sqrt(n);
    for(int i=1;i<=n;i++)
        pos[i]=(i-1)/tmp+1;
    sort(q+1,q+m+1,cmp);
    int l=1,r=0,tot=0;
    for(int i=1;i<=m;i++)
    {
        while(l<q[i].l)
            change(tot,l++,0);
        while(l>q[i].l)
            change(tot,--l,1);
        while(r<q[i].r)
            change(tot,++r,1);
        while(r>q[i].r)
            change(tot,r--,0);
        ans[q[i].id]=tot;
    }
    for(int i=1;i<=m;i++)
        printf("%d\n",ans[i]);
    return 0;
}
莫队

 

也可以用离线算法+树状数组来做这道题

用nxt[i]来记录下一个与第i个数相同的数的位置

将询问的区间按左端点进行排序

用一个指针l指向当前区间的左端点,当l向右移动时,第l个数就不在查询的区间内了,这时就将树状数组中nxt[l]位置上的数+1(自己举个例子就比较好理解了)

#include<complex>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=5e4+7;
struct node{
    int l,r,id;
}q[N<<2];
int n,m;
int c[N],nxt[N],pre[N*20],ans[N<<2];
int qread()
{
    int x=0;
    char ch=getchar();
    while(ch<'0' || ch>'9')ch=getchar();
    while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x;
}
inline int Lowbit(int x)
{
    return x&-x;
}
inline int Add(int x,int v)
{
    for(;x<=n;x+=Lowbit(x))
        c[x]+=v;
}
inline int Sum(int x)
{
    int ans=0;
    for(;x;x-=Lowbit(x))
        ans+=c[x];
    return ans;
}
bool cmp(const node &a,const node &b)
{
    return a.l<b.l;
}
int main()
{
    scanf("%d",&n);
    int x;
    for(int i=1;i<=n;i++)
    {
        x=qread();
        nxt[pre[x]]=i;
        if(!pre[x])Add(i,1);
        pre[x]=i;
    }
    scanf("%d",&m);
    for(int i=1;i<=m;i++)
    {
        q[i].l=qread();q[i].r=qread();
        q[i].id=i;
    }
    sort(q+1,q+m+1,cmp);
    int l=1;
    for(int i=1;i<=m;i++)
    {
        while(l<q[i].l)
        {
            if(nxt[l])
                Add(nxt[l],1);
            l++;
        }
        ans[q[i].id]=Sum(q[i].r)-Sum(q[i].l-1);
    }
    for(int i=1;i<=m;i++)
        printf("%d\n",ans[i]);
    return 0;
}
树状数组

 

转载于:https://www.cnblogs.com/LeTri/p/8575126.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值