群晖NAS-经验分享 因此我们选择同步任务中的单向上传,而且删除本地文件后,服务器端的文件仍然保留,当我们需要找已经被删除的文件的时候,只需要去nas当中找就好了。由于我们的目标是删除本地任务后,远程端仍然有备份。保证我们可以自由决定本地端留下什么,存储需要多少。创建同步任务,选择需要备份的本地磁盘以及远程存储的位置。macbook中安装并启动:SynologyDrive。
openai_api和doc文档的实验笔记和内容解读 错误原因:openai.ChatCompletion.create(proj:MAD)api调用的问题,以及一些旧版的api的内容,可以在api 应用程序接口 中找到。大多数的内容都可以从官方文档的搜索当中找到。最新的调用代码应该参考官网为。
介绍GPT-o1:一系列解决困难问题( science, coding, and math )的推理模型 这里有一个问题,就是,所招募的专家测试结果是找的各个专业的phd做完整的测试,然后取精确率的平均值作为对比数值,还是请他们分别做自己所属专业的部分试题,然后将结果汇总作为专家结果。我们认为,使用思维链可以在安全性和一致性方面取得重大进展,因为(1)它使我们能够以清晰的方式观察模型思维,(2)关于安全规则的模型推理对分布外的场景更稳健。然而,为了实现这一点,模型必须能够以不变的形式自由表达其思想,因此我们无法将任何政策合规性或用户偏好训练到思想链上。例如,在未来,我们可能希望监控思维链,寻找操纵用户的迹象。
ReFT: reasoning with reinforced Fine-Tuning 用influence function来衡量新增一条数据对于模型训练的整体的影响。对比随即筛选和reward model筛选(开源的,用于对齐人类便好)。从一个question中看到多种多样的cot,都可以从中学习。思考增加或者减少一条数据,对于模型训练的影响。高质量的数据能够对主题产生正向的支持/反对。高质量的数据能够对模型产生正向的影响。使用最后一层MLP的梯度,聚类找出。数据的质量是模型自己来定义的。
预训练语言模型实践笔记 在使用像BERT或RoBERTa这样的transformer模型时,和是两个不同的概念。: 这是一个布尔值,决定了模型是否应该返回所有隐藏层的输出。如果设置为True,模型将返回一个元组,其中包含每一层的隐藏状态。这对于某些任务(如特征提取或fine-tuning)可能是有用的,因为不同的隐藏层可能会捕获不同类型的信息。: 这是模型的最后一个隐藏层的输出,通常用作下游任务的输入(如文本分类或命名实体识别)。这是模型的主要输出,通常包含了输入序列的高级表示。在大多数情况下,您只需要。
计算机顶会论文检索途径和方法 计算语言协会有一个专门的网站,ACL系列的论文都会包括在其中,如果检索自然语言相关的论文,可以直接来ACL当中通过关键词检索就可以了。点击click to fetch all获取本次会议所有论文的标题,然后根据ctrl+f,利用浏览器根据标题检索论文即可。进入网站之后,选择会议以及会议年份,会显示每一年的官方网站,或者直接有论文列表。网址中会有会议年份选择和论文列表选择,进入论文列表之后直接根据关键词检索即可。如果没有论文列表,则考虑进入此页面中的会议官方网址,选中对应会议,进入检索论文即可。
基于Pushdeer(类似于Server酱)的任务完成提醒+wandb可视化模型训练结果 然后在代码运行的主文件夹中,引入当前程序的跟路径(一般是程序所在的主文件夹);然后倒入pushdeer模块,并调用该模块下的push_deer()方法,发送消息推送。.py文件是模块 含有.py文件以及__init__.py文件的文件夹是包。会得到设备的key,目前没有推送限制,一天50条。