研究人员揭示了胜利人工智能的内部运作

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/adsd165/article/details/90174498

  卡内基梅隆大学的研究人员报告称,今年早些时候在无限制德州扑克中击败四位顶级职业扑克玩家的人工智能,使用三管齐下的方法来掌握比宇宙中原子更多决策点的游戏。 。

  在一篇由科学杂志在线发表的论文中,计算机科学教授Tuomas Sandholm和博士Noam Brown博士。计算机科学系的学生,详细说明他们的AI如何通过将游戏分解为计算可管理的部分来实现超人的表现,并且基于其对手的游戏玩法,在比赛期间修复其策略中的潜在弱点。

  人工智能程序在跳棋,国际象棋和围棋中击败了顶级人类 - 所有具有挑战性的游戏,但两个玩家在任何时候都知道游戏的确切状态。相比之下,扑克玩家应对隐藏的信息 - 他们的对手持有什么牌以及对手是否虚张声势。

  2017年1月,在匹兹堡里弗斯河赌场举行的为期20天的竞赛中,有12万人参赛,Libratus成为第一个以无限制德州扑克击败顶级人类玩家的人工智能 - 主要基准和长期挑战问题AIs的不完全信息游戏解决方案。

  Libratus在双人游戏中单独击败每个玩家,共筹集超过180万美元的筹码。用不完全信息游戏人工智能研究人员使用的标准,以每手毫米百叶窗(mbb /手)来衡量,Libratus决定性地以147万桶/手击败人类。在扑克术语中,这是每场比赛14.7个大盲注

  “Libratus中的技术不使用专家领域知识或人类数据,也不是扑克专用的,”Sandholm和Brown在论文中说。“因此,他们适用于一系列不完善的信息游戏。”他们指出,这些隐藏的信息在现实世界的战略互动中无处不在,包括商业谈判,网络安全,金融,战略定价和军事应用。

  Libratus包括三个主要模块,第一个模块计算游戏的抽象,比游戏中的所有10161(数字1后跟161个零)可能的决策点更小,更容易解决。然后它为德州扑克的早期轮次制定了自己的详细策略,并为后续轮次制定了粗略策略。这种策略称为蓝图策略。

  扑克中这些抽象的一个例子是将类似的手放在一起并对它们进行相同的处理。

  “直觉上,King-high flush和Queen-high flush之间几乎没有区别,”Brown说。“将这些牌视为相同的牌会降低游戏的复杂性,从而使计算更容易。”同样,类似的投注大小也可以组合在一起。

  但是在游戏的最后几轮中,第二个模块根据游戏状态构建一个新的,更细粒度的抽象。它还实时计算了这个子博弈的策略,使用蓝图策略来平衡不同子游戏中的策略 - 需要采取一些措施来实现安全的子博弈解决。在1月份的比赛中,Libratus使用匹兹堡超级计算中心的Bridges计算机进行了这项计算。

  每当对手进行不在抽象中的移动时,模块计算该子游戏的解决方案,包括对手的移动。桑德霍尔姆和布朗称这个嵌套的子游戏解决了。

  DeepStack是由阿尔伯塔大学创建的用于单挑,无限制德州扑克的人工智能,也包括一个类似的算法,称为持续重新解决;然而,DeepStack尚未针对顶级职业选手进行测试。

  第三个模块旨在随着竞争的进行改进蓝图策略。通常,Sandholm说,AI使用机器学习来找到对手战略中的错误并利用它们。但如果对手改变策略,这也会使人工智能受到剥削。

  相反,Libratus的自我改进模块分析了对手的赌注大小,以发现Libratus蓝图策略中的潜在漏洞。然后Libratus添加这些缺失的决策分支,为它们计算策略,并将它们添加到蓝图中。

  “我们开发的技术在很大程度上与领域无关,因此可以应用于其他战略不完美信息交互,包括非娱乐应用,”Sandholm和Brown总结道。“由于隐藏信息在现实世界的战略互动中无处不在,我们相信Libratus中引入的范例对于AI的未来发展和广泛应用至关重要。”

  该技术已获得由Sandholm成立的公司Strategic Machine,Inc。独家授权,将战略推理技术应用于许多不同的应用。

大连妇科检查多少钱 http://mobile.bhyy0411.com/
展开阅读全文

揭示人类基本能力,解析灵魂,明确人工智能发展方向

03-28

人是地球上最智慧的生物、最高级的物种,那么人到底有哪些特别之处?为什么研究了多少年也没有出现正真意义的人工智能?而很多人把问题归结为人有灵魂,至于什么是灵魂,基本都是一些怪力乱神的假说,没有依据没有证据。这里先要说明“灵魂、意识、自我”恰恰是目前人工智能研究领域最大的干扰,让人工智能研究误入歧途,难以自拔。所有在讲人工智能之前,先封杀这三个词,当明白下面关于人的基本能力构成后,就会发现有了这些基本能力的组合运用,自然会产生所谓的“灵魂、意思、自我”。可以说这几个词就是一些人面对现实困难的一种臆想。rn人类最根本的五大能力rnrn感知力——记忆力——思考力——表达力——运动力rnrn 感知力rnrn感知力的关键是感知信息来源于人体的感知器官,包括眼睛、耳朵、嘴巴、鼻子、皮肤、痛觉神经、痒觉神经、麻觉神经,人体通过这些器官,搜集信息,存储记忆,或与记忆进行比较。rnrn人工智能应用与现状:摄像头、麦克风、触摸屏、指纹识别、红外线探测、温度计、湿度计、陀螺仪等技术可以组成人工智能的感知器官,比人类感知到更大范围的信息,传输给内存。rnrn记忆力基本分类rnrn深度记忆——对记忆的内容深信不疑,很难遗忘。比方说吃饭要用碗剩,自己叫什么名字等,不假思索就会回答的问题。rnrn中度记忆——对记忆内容有一定的怀疑,时间长了会遗忘。比方说死记硬背一首诗,记住一个观点。rnrn表浅记忆——对记忆的内容不加以判断,短时间内会遗忘。比方说记住昨天的天气。rnrn遗忘能力——通过忘记不重要的内容,留出更多的记忆空间,凸显记忆里的重要内容。(人工智能可根据不同的场景需要,决定是否需要该能力。比方说机器人清洁工,每天大街上会看到各种事物,但是大多与工作无关,需要遗忘)rnrn人工智能应用与现状:记忆力对应于人工智能,主要体现在数据库的分层,读取数据时有主次之分。多维数据库或许是个有前景的解决方案。rnrn当然,另一种更有前景的应用是避开人脑记忆的深浅区别,所有数据都一视同仁的对待,通过联网技术能迅速查询海量的信息,形成一个记忆力远超人类的人工智能。而人工智能可以比较海量信息,去芜存菁、去伪存真,得出一个相对准确完善的答案。rnrn 思考力基本分类rnrn搜索能力——通过感知外界的信息,搜索记忆里匹配的信息。比方说回答自己叫什么名字。rnrn比较能力——分类比、反比,通过比较找出类似或相反的内容。如比较谁的身材高大。rnrn加减能力——如做数学运算,人在这方面跟计算机很像,最根本的能力就是加和减,其他如乘、除、开方、次方等,都是在加、减能力结合记忆搜索能力的推导。rnrn失控能力——就是不运用上面任何一种思考力,类似计算机的随机。比方说随意画了几条线,感觉挺有意思,再搜索记忆,组合运用比较、加减这些思考力,画出一副全新的作品。这种能力常常是颠覆性创新的突破点。搜索、比较、加减通常带来的是理性,失控通常带来感性。(人工智能是否拥有颠覆性创新能力,也关键在于是否拥有这种能力)rnrn注:创新可以分为改进型创新和颠覆型创新,改进型创新可以通过对记忆的搜索、比较、加减,得出一个优化方案。巅峰型创新一般也可以通过对记忆的搜索、比较、加减,得出一个全新的方案。但对于一些跨时代的创新,如相对论、量子论、弦论、现代计算机等跨越性理论的提出,是因为在失控随机状态下,突然被某事物所触动,在加以对记忆的搜索、比较、加减,得出一个全新的内容。rnrn人工智能应用与现状:思考力是人最重要的能力,也是人工智能最重要的能力。目前不但提升性能的CPU主要用来处理思考力的工作。可以通过多CPU各司其职的方式,来提升运算效率(详情参考后面的人工智能操作系统模块)。但仅仅CPU是不够的,更重要的是一套拥有搜索、比较、加减、失控能力的算法,目前较成熟的是搜索的算法,其他三种还比较欠缺。rnrn 表达力基本分类rnrn口头表达——用嘴说。rnrn书面表达——用手写。rnrn表情表达——哭、笑、挤眉溜眼等,通过控制面部器官的运动,来表达信息。rnrn肢体表达——通过控制肢体的运动,来表达信息。rnrn人工智能应用与现状:音响、屏幕、投影、打印、3D打印、日本的机器人面部表情、肢体动作、机器语音,人工智能在表达力方面,已经走出很远。机器语音目前显得很呆板木讷,正是因为没有启用人工智能,机器自身对发音内容没有认知,导致机器发音没有情感。rnrn运动力rnrn运动力的根本来源于转动力。人的所有运动都是人体关节或其他组织转动的结果,而这种转动力由肌肉或人体其他组织的收缩产生。rnrn这种重点解释平衡力,平衡力其实是一种思考力。如婴儿通过练习,学会行走;普通人通过练习,可以走钢丝,跳芭蕾,溜冰滑雪。这里平衡力产生的过程是:通过学习产生不同场景下肌肉收缩状态和张力大小的记忆——反复学习、练习把记忆变成深度记忆——以后遇到类似场景搜索记忆——匹配记忆里的肌肉收缩状态和张力大小。人的小脑就是做平衡力思考运算的一个专用CPU。(人工智能有了平衡力专用CPU,就能跟人一样拥有平衡力)rnrn人工智能应用与现状:钢铁骨架、日本的仿真机器人外形、各种灵巧的驱动技术、平衡车、电池技术,为人工智能的运动力提供保障。rnrn认知力——感知力、记忆力、思考力的副产品rnrn如大街上看到一个人的侧面,感觉很像你的同事张三,走进一看,果然是你的同事张三。rnrn这就是一个认知的过程。之所以能认出是你的同事张三,流程是这样的:在日常工作中,你多次从不同角度看到你的同事张三,这些形象通过眼睛这个感知力器官把信息交给记忆力——大街上看到某人侧面时搜索到相关的记忆——通过比较现在看到的形象与记忆里的形象得出相似度——走进一看,得到更多现在看到的信息,跟记忆里的形象比较得出更多相同的特征——从而判断就是同事张三。rnrn人工智能应用与现状:现在已经开始运用的人脸识别技术、语音识别技术、触摸屏技术、指纹识别,已经为人工智能的认知力打开了序幕。rnrn人工智能架构rnrn结合人类基本能力的定义,根据目前科技的现状,可以设计一套人工智能的框架雏形。当然,这只是一个最核心的架构,具体实现需要解决每个模块的具体实现和模块间的关联运作。rnrn硬件:rnrn1. 感知=探测:可以定制尺寸的摄像头、麦克风、触摸屏、指纹识别、红外线探测、温度计、湿度计、陀螺仪、指南针、GPS。rnrn2. 记忆=存储:高速内存,大容量固态硬盘。rnrn3. 思考=运算:ARM架构CPU。rnrn4. 表达=输出:音响、屏幕、投影、打印输出接口、日本的面部表情机器人、日本肢体动作机器人。rnrn5. 运动=驱动:钢铁骨架、日本的仿真外形机器人、灵巧的驱动装置、平衡装置、快充大容量电池。rnrn操作系统:rnrn感知模块rnrn感知硬件大量采集信息——分类存储数据库。rnrn认知模块rnrn感知硬件获取新信息——CPU搜索存储的类似信息——CPU比较新信息与已存储信息的共同特征——CPU做出相似度判断并同时把新信息进行归类存储。rnrn思考模块rnrn分有需求思考和无需求思考。rnrn1. 有需求思考,指某件事物跟存储无法匹配,如跟储存的内容有差异,跟存储内容相反,更存储内容互补。rnrn感知硬件获取新信息——CPU搜索存储的类似信息——CPU发现新信息跟存储的内容或差异、或相反、或互补——CPU对存储进行类比、反比、加、减运算——CPU得出最接近的答案——CPU对答案进行演算——演算通过则输出答案,否则回到第四步。rnrn2. 无需求思考,指人工智能在没有接受到任何外部信息的情况下,随机进行的思考,这里主要运用到失控算法。rnrnCPU在空闲时间,就如电脑屏保一样进入随机状态——CPU在随机状态突然扑捉到一些信息特征——CPU搜索存储——CPU进行反复进行类比、反比、加、减、再次搜索运算——CPU创新一个新事物——CPU根据当时环境需要存储或输出。rnrn表达模块rnrn感知模块获取新信息内容和信息的特征——CPU搜索存储里的信息特征——CPU比较特征的共同点,从而判断对方是什么需求——CPU搜索存储里需求的类似答案——通过表达硬件输出答案。rnrn如麦克风接收到“今天天气不错。”CPU搜索记忆里语气的特征,判断是一个陈述句,则再次搜索今天天气情况,结合前面谈话的内容,进行对话。rnrn如麦克风接收到“今天天气不错?”CPU搜索记忆里语气的特征,发现最后一个字的发音有拉长,判断是一个疑问句,则再次搜索今天天气情况,结合前面谈话的内容,进行对话。rnrn运动模块rnrn感知模块存储大量信息——思考模块分析需求——感知硬件扑捉到新的环境信息——认知模块认识环境——CPU根据存储指挥运动硬件进行运动以满足需求。rnrnrnrn总结rnrn把感知力、记忆力、思考力、表达力、运动力组合在一起,就可以完全拥有人的能力,或可以称之为灵魂。如果把这些能力赋予机器,机器将拥有跟人完全无二至的“灵魂”。rnrn而机器的记忆存储能力、CPU运算能力、众多的感知部件、联网能力、钢铁等高强度材料带来的运动能力、长时间不知疲倦不眠不休的能力,都优于人类,机器人真拥有了人的能力,将对人类社会的发展带来巨大的帮助。rnrn但是如果不加以控制,机器人根据各自存储记忆的不同,运算方法的不同,也会像人类社会一样产生好人、坏人、守规矩的人、野心家。rnrn为了减少机器人对人类的破坏,阿西莫夫的机器人三原则可以作为最深化且不可改变的记忆储存在机器人的记忆体里。“第一条:机器人不得伤害人类,或看到人类受到伤害而袖手旁观。第二条:机器人必须服从人类的命令,除非这条命令与第一条相矛盾。第三条:机器人必须保护自己,除非这种保护与以上两条相矛盾。”所有的机器人必须严格经过这样的洗脑程序检验,才能获得国家的出厂许可。rnrn 这篇文字也许会打开潘多拉的魔盒,但并不可怕,人类社会何尝不是因打开了潘多拉的魔盒而前进。纵观人类历史,每一次人类的飞跃都是一次打开魔盒的过程。原始社会大家都跟兄弟姐妹一样相依为命、平等相处,奴隶社会出现了,魔盒打开,一些人成为了奴隶,但好处是工作不在各自为战,变得有组织有纪律,用团队的力量干成很多之前个人无法完成的事。奴隶社会到封建社会,魔盒再次打开,奴隶主的命令不再那么说一不二,但是产生了农民,释放了劳动的积极性,创造出更多的社会价值。火药传入西方,第一次工业革命,使西方称霸世界,造成了世界的不公平,但却推动了人类科技文明的发展。原子弹爆炸,给世界带来毁灭的威胁,这么多年过去了,却也带来了核平衡,整个世界没有发生大的战争。科技是无法回避的,你觉得不好不去研究,迟早别人也会研究出来。不论是社会的进步还是科技的发展,本身都是双刃剑,关键在于怎么规避有害的一面,运用有利的一面。 论坛

没有更多推荐了,返回首页