POJ 2449(求k短路,A*)

题目:求s到t的第k短路。

思路:网上是清一色的A*算法,所以学习了一下。所谓Astar算法其实就是启发式的bfs。这里设置了一个估价函数h,结合当前位置的最短路和到终点的估计最短路长度来选择下一个要扩展的节点(dijkstra算法对于所有的点的h值可以视为是一样的,所以下一个扩展的节点只与当前的最短路g有关)。这个h的值越接近手记最短路越好,但是不能少于实际最短路(否则会错误),假设h值就是实际最短路的值,那么这个Astar算法可以一次找到最短路,相对的,如果h比实际值稍大,那么仍然可以去掉很多无意义的搜索量。此题要求k短路,如果不用astar算法几乎没法搜。。。

对于这个题,我们可以取h值等于实际值,这个可以通过把边反向跑一次最短路求得。然后依然从s开始搜,但是把优先队列的关键字改为f=g+h,优先对f小的点扩展。首先搜到的肯定是原最短路上的点,等到原来的最短路搜完了,队列中的f的最小值就会变大,此时再取出的点可能是之前扩展过的,但是搜到的是长度更长的另一条路。不论是第几长路,每次扩展肯定会把这个长度的路全部扩展完(到达t)才会搜索更长的路,所以肯定有cnt[t]==k的时候,此时扩展到t的路的长度就是k长路的长度。另外,如果s和t不连通而存在s可达的圈的话就要判断一下每个点的扩展次数超过k就跳出,否则会死循环。

Ps:此题当s==t的时候k要加1,大概是因为必须得走路才行,因为这个wa了好久==

 

/*
* @author:  Cwind
* http://www.cnblogs.com/Cw-trip/
*/
#include <iostream>
#include <map>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <queue>
#include <stack>
#include <functional>
#include <set>
#define pb push_back
#define fs first
#define se second
#define bk back()
using namespace std;
typedef long long ll;
typedef pair<ll,ll> P;

const int maxn=1020;
int n,m;
int S,T,K;
struct EDGE{
    int to,d;
    EDGE(int to,int d):to(to),d(d){}
};
vector<EDGE> G[maxn],rG[maxn];

ll h[maxn];
int cnt[maxn];
void init(){
    memset(h,0x2f,sizeof h);
    h[T]=0;
    priority_queue<P,vector<P>,greater<P> > Q;
    Q.push(P(0,T));
    while(!Q.empty()){
        ll v=Q.top().se,d=Q.top().fs;
        Q.pop();
        if(h[v]<d) continue;
        for(int i=0;i<rG[v].size();i++){
            EDGE &e=rG[v][i];
            if(h[e.to]>h[v]+e.d){
                h[e.to]=h[v]+e.d;
                Q.push(P(h[e.to],e.to));
            }
        }
    }
}
struct A{
    ll f,g,p;
    A(ll f,ll g,ll p):f(f),g(g),p(p){}
    bool operator < (const A &C)const {
        return f>C.f;
    }
};
ll Astar(){
    priority_queue<A> Q;
    Q.push(A(h[S],0,S));
    while(!Q.empty()){
        A stg=Q.top();Q.pop();
        cnt[stg.p]++;
        if(stg.p==T&&cnt[T]==K){
            return stg.f;
        }
        if(cnt[stg.p]>K) continue;
        for(int i=0;i<G[stg.p].size();i++){
            EDGE &e=G[stg.p][i];
            Q.push(A(stg.g+e.d+h[e.to],stg.g+e.d,e.to));
        }
    }
    return -1;
}
int main(){
    freopen("/home/files/CppFiles/in","r",stdin);
    cin>>n>>m;
    for(int i=0;i<m;i++){
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        G[a].pb(EDGE(b,c));
        rG[b].pb(EDGE(a,c));
    }
    cin>>S>>T>>K;
    init();
    if(S==T) K++;
    ll ans=Astar();
    cout<<ans<<endl;
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/Cw-trip/p/4768150.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这是一道比较经典的计数问题。题目描述如下: 给定一个 $n \times n$ 的网格图,其中一些格子被标记为障碍。一个连通块是指一些被标记为障碍的格子的集合,满足这些格子在网格图中连通。一个格子是连通的当且仅当它与另一个被标记为障碍的格子在网格图中有公共边。 现在,你需要计算在这个网格图中,有多少个不同的连通块,满足这个连通块的大小(即包含的格子数)恰好为 $k$。 这是一道比较经典的计数问题,一般可以通过计算生成函数的方法来解决。具体来说,我们可以定义一个生成函数 $F(x)$,其中 $[x^k]F(x)$ 表示大小为 $k$ 的连通块的个数。那么,我们可以考虑如何计算这个生成函数。 对于一个大小为 $k$ 的连通块,我们可以考虑它的形状。具体来说,我们可以考虑以该连通块的最左边、最上边的格子为起点,从上到下、从左到右遍历该连通块,把每个格子在该连通块中的相对位置记录下来。由于该连通块的大小为 $k$,因此这些相对位置一定是 $(x,y) \in [0,n-1]^2$ 中的 $k$ 个不同点。 现在,我们需要考虑如何计算这些点对应的连通块是否合法。具体来说,我们可以考虑从左到右、从上到下依次处理这些点,对于每个点 $(x,y)$,我们需要考虑它是否能够与左边的点和上边的点连通。具体来说,如果 $(x-1,y)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们就是连通的;同样,如果 $(x,y-1)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们也是连通的。如果 $(x,y)$ 与左边和上边的点都不连通,那么说明这个点不属于该连通块。 考虑到每个点最多只有两个方向需要检查,因此时间复杂度为 $O(n^2 k)$。不过,我们可以使用类似于矩阵乘法的思想,将这个过程优化到 $O(k^3)$ 的时间复杂度。 具体来说,我们可以设 $f_{i,j,k}$ 表示状态 $(i,j)$ 所代表的点在连通块中,且连通块的大小为 $k$ 的方案数。显然,对于一个合法的 $(i,j,k)$,我们可以考虑 $(i-1,j,k-1)$ 和 $(i,j-1,k-1)$ 这两个状态,然后把点 $(i,j)$ 加入到它们所代表的连通块中。因此,我们可以设计一个 $O(k^3)$ 的 DP 状态转移,计算 $f_{i,j,k}$。 具体来说,我们可以考虑枚举连通块所包含的最右边和最下边的格子的坐标 $(x,y)$,然后计算 $f_{x,y,k}$。对于一个合法的 $(x,y,k)$,我们可以考虑将 $(x,y)$ 所代表的点加入到 $(x-1,y,k-1)$ 和 $(x,y-1,k-1)$ 所代表的连通块中。不过,这里需要注意一个细节:如果 $(x-1,y)$ 和 $(x,y)$ 在网格图中没有相邻边,那么它们不能算作连通的。因此,我们需要特判这个情况。 最终,$f_{n,n,k}$ 就是大小为 $k$ 的连通块的个数,时间复杂度为 $O(n^2 k + k^3)$。 参考代码:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值