Ultimate Weirdness of an Array
写不出来, 日常好菜啊。。
考虑枚举GCD, 算出一共有多少个对 f(l, r) <= GCD, 我们用fuc[ i ] 表示的是在 l = i 这个位置开始, 最小的合法的 R,
可以发现这个函数随 i 单调不下降, 枚举GCD 的时候, 找到GCD 的倍数的位置, 用线段树更新最大值。
#include<bits/stdc++.h> #define LL long long #define LD long double #define ull unsigned long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x) ((int)x.size()) #define ALL(x) (x).begin(), (x).end() #define fio ios::sync_with_stdio(false); cin.tie(0); using namespace std; const int N = 2e5 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 998244353; const double eps = 1e-8; const double PI = acos(-1); template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;} template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < 0) a += mod;} template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;} template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;} int n, a[N]; int maxPos[N][2]; int minPos[N][2]; int cnt[N]; LL H[N]; int mx[2], mn[2], tot; #define lson l, mid, rt << 1 #define rson mid + 1, r, rt << 1 | 1 struct segmentTree { LL sum[N << 2]; int lazy[N << 2], mn[N << 2], mx[N << 2]; inline void pull(int rt) { sum[rt] = sum[rt << 1] + sum[rt << 1 | 1]; mx[rt] = max(mx[rt << 1], mx[rt << 1 | 1]); mn[rt] = min(mn[rt << 1], mn[rt << 1 | 1]); } inline void push(int rt, int l, int r) { if(~lazy[rt]) { int mid = l + r >> 1; sum[rt << 1] = 1LL * (mid - l + 1) * lazy[rt]; sum[rt << 1 | 1] = 1LL * (r - mid) * lazy[rt]; lazy[rt << 1] = lazy[rt << 1 | 1] = lazy[rt]; mx[rt << 1] = mn[rt << 1] = lazy[rt]; mx[rt << 1 | 1] = mn[rt << 1 | 1] = lazy[rt]; lazy[rt] = -1; } } void build(int l, int r, int rt) { lazy[rt] = -1; if(l == r) { sum[rt] = l; mx[rt] = l; mn[rt] = l; return; } int mid = l + r >> 1; build(lson); build(rson); pull(rt); } void update(int L, int R, int val, int l, int r, int rt) { if(R < l || r < L || R < L) return; if(mn[rt] >= val) return; if(L <= l && r <= R && mx[rt] <= val) { sum[rt] = 1LL * (r - l + 1) * val; mx[rt] = val; mn[rt] = val; lazy[rt] = val; return; } if(l == r) return; push(rt, l, r); int mid = l + r >> 1; update(L, R, val, lson); update(L, R, val, rson); pull(rt); } } Tree; int main() { memset(maxPos, 0xc0, sizeof(maxPos)); memset(minPos, 0x3f, sizeof(minPos)); scanf("%d", &n); for(int i = 1; i <= n; i++) { scanf("%d", &a[i]); cnt[a[i]]++; if(i >= maxPos[a[i]][0]) { maxPos[a[i]][1] = maxPos[a[i]][0]; maxPos[a[i]][0] = i; } else if(i > maxPos[a[i]][1]) maxPos[a[i]][1] = i; if(i <= minPos[a[i]][0]) { minPos[a[i]][1] = minPos[a[i]][0]; minPos[a[i]][0] = i; } else if(i < minPos[a[i]][1]) minPos[a[i]][1] = i; } Tree.build(1, n, 1); for(int v = 200000; v >= 0; v--) { H[v] = 1LL * n * n - Tree.sum[1] + n; if(!v) break; mx[0] = mx[1] = -inf - 1; mn[0] = mn[1] = inf; tot = 0; for(int w = v; w <= 200000; w += v) { if(maxPos[w][0] == -inf - 1) continue; if(maxPos[w][0] >= mx[0]) mx[1] = mx[0], mx[0] = maxPos[w][0]; else if(maxPos[w][0] > mx[1]) mx[1] = maxPos[w][0]; if(maxPos[w][1] >= mx[0]) mx[1] = mx[0], mx[0] = maxPos[w][1]; else if(maxPos[w][1] > mx[1]) mx[1] = maxPos[w][1]; if(minPos[w][0] <= mn[0]) mn[1] = mn[0], mn[0] = minPos[w][0]; else if(minPos[w][0] < mn[1]) mn[1] = minPos[w][0]; if(minPos[w][1] <= mn[0]) mn[1] = mn[0], mn[0] = minPos[w][1]; else if(minPos[w][1] < mn[1]) mn[1] = minPos[w][1]; tot += cnt[w]; } if(tot == 2) { int p1 = mn[0], p2 = mn[1]; Tree.update(1, p1, p1, 1, n, 1); Tree.update(p1 + 1, p2, p2, 1, n, 1); Tree.update(p2 + 1, n, n + 1, 1, n, 1); } else if(tot == 3) { int p1 = mn[0], p2 = mn[1], p3 = mx[0]; Tree.update(1, p1, p2, 1, n, 1); Tree.update(p1 + 1, p2, p3, 1, n, 1); Tree.update(p2 + 1, n, n + 1, 1, n, 1); } else if(tot > 3){ int p1 = mn[0], p2 = mn[1], p3 = mx[1], p4 = mx[0]; Tree.update(p2 + 1, n, n + 1, 1, n, 1); Tree.update(p1 + 1, p2, p4, 1, n, 1); Tree.update(1, p1, p3, 1, n, 1); } } LL ans = 0; for(int i = 1; i <= 200000; i++) ans += (H[i] - H[i - 1]) * i; printf("%lld\n", ans); return 0; } /* */