HDU - 5330 Route Statistics dp(看题解)

HDU - 5330

感觉这种dp和子集和dp差不多, 有点难想到。

dp[ i ][ S ][ j ]  表示最低的 i 位和 S最低的 i 位一样的所有串中, 和 S 的距离为 j 的有多少个。

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
#define LL long long
#define LD long double
#define ull unsigned long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ALL(x) (x).begin(), (x).end()
#define fio ios::sync_with_stdio(false); cin.tie(0);

using namespace std;

const int N = 2e5 + 7;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = (int)1e9 + 7;
const double eps = 1e-8;
const double PI = acos(-1);

template<class T, class S> inline void add(T &a, S b) {a += b; if(a >= mod) a -= mod;}
template<class T, class S> inline void sub(T &a, S b) {a -= b; if(a < 0) a += mod;}
template<class T, class S> inline bool chkmax(T &a, S b) {return a < b ? a = b, true : false;}
template<class T, class S> inline bool chkmin(T &a, S b) {return a > b ? a = b, true : false;}

mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());

int n, m, up;
int dp[2][N][23];
int c[N];
int (*f)[23] = dp[0];
int (*g)[23] = dp[1];
int v[12];
LL ans[23];

char s[20];

void init() {
    memset(ans, 0, sizeof(ans));
    for(int i = 0; i < up; i++) {
        c[i] = 0;
    }
    for(int i = 0; i < up; i++) {
        for(int j = 0; j <= 2 * m; j++) {
            f[i][j] = 0;
        }
    }
}

int main() {
    int T; scanf("%d", &T);
    while(T--) {
        scanf("%d%d", &n, &m);
        up = 1;
        for(int i = 1; i <= m; i++) {
            up = up * 3;
        }
        init();
        for(int i = 0; i < n; i++) {
            int val = 0;
            scanf("%s", s);
            for(int j = 0; j < m; j++) {
                val = val * 3 + (s[j] - '0');
            }
            f[val][0]++;
            c[val]++;
        }
        for(int i = 0; i < m; i++) {
            swap(f, g);
            for(int mask = 0; mask < up; mask++) {
                for(int j = 0, k = mask; j < m; j++, k /= 3) {
                    v[j] = k % 3;
                }
                int pmask0 = 0, pmask1 = 0, pmask2 = 0;
                for(int j = m - 1; j >= 0; j--) {
                    pmask0 *= 3; pmask1 *= 3; pmask2 *= 3;
                    if(j == i) {
                        pmask0 += 0;
                        pmask1 += 1;
                        pmask2 += 2;
                    } else {
                        pmask0 += v[j];
                        pmask1 += v[j];
                        pmask2 += v[j];
                    }
                }
                for(int j = 0; j <= 2 * m; j++) {
                    f[mask][j] = 0;
                    if(v[i] == 0) {
                        f[mask][j] += g[pmask0][j];
                        if(j >= 1) f[mask][j] += g[pmask1][j - 1];
                        if(j >= 2) f[mask][j] += g[pmask2][j - 2];
                    }
                    else if(v[i] == 1) {
                        if(j >= 1) f[mask][j] += g[pmask0][j - 1];
                        f[mask][j] += g[pmask1][j];
                        if(j >= 1) f[mask][j] += g[pmask2][j - 1];
                    }
                    else {
                        if(j >= 2) f[mask][j] += g[pmask0][j - 2];
                        if(j >= 1) f[mask][j] += g[pmask1][j - 1];
                        f[mask][j] += g[pmask2][j];
                    }
                }
            }
        }
        for(int mask = 0; mask < up; mask++) {
            ans[0] += 1LL * c[mask] * (c[mask] - 1);
            for(int j = 1; j <= 2 * m; j++) {
                ans[j] += 1LL * c[mask] * f[mask][j];
            }
        }
        for(int i = 0; i <= 2 * m; i++) {
            printf("%lld\n", ans[i] / 2);
        }
    }
    return 0;
}

/*
*/

 

转载于:https://www.cnblogs.com/CJLHY/p/11308629.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值