坐在马桶上看算法—快速排序

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/afjaklsdflka/article/details/52829030

前言:

         前两天在一个公众号上看到的一篇关于快速排序的帖子,讲的十分简洁明了,在这里分享给大家。

正文:

        我们讲快速排序结合一个例子来说明,假设我们现在对“6  1  2 7  9  3  4  5 10  8”这个10个数进行排序。首先在这个序列中随便找一个数作为基准数(不要被这个名词吓到了,就是一个用来参照的数,待会你就知道它用来做啥的了)。为了方便,就让第一个数6作为基准数吧。接下来,需要将这个序列中所有比基准数大的数放在6的右边,比基准数小的数放在6的左边,类似下面这种排列。
        3  1  2 5  4  6  9 7  10  8
       在初始状态下,数字6在序列的第1位。我们的目标是将6挪到序列中间的某个位置,假设这个位置是k。现在就需要寻找这个k,并且以第k位为分界点,左边的数都小于等于6,右边的数都大于等于6。想一想,你有办法可以做到这点吗?
       给你一个提示吧。请回忆一下冒泡排序,是如何通过“交换”,一步步让每个数归位的。此时你也可以通过“交换”的方法来达到目的。具体是如何一步步交换呢?怎样交换才既方便又节省时间呢?先别急着往下看,拿出笔来,在纸上画画看。我高中时第一次学习冒泡排序算法的时候,就觉得冒泡排序很浪费时间,每次都只能对相邻的两个数进行比较,这显然太不合理了。于是我就想了一个办法,后来才知道原来这就是“快速排序”,请允许我小小的自恋一下(^o^)。
       方法其实很简单:分别从初始序列“6  1  2 7  9  3  4  5 10  8”两端开始“探测”。先从右往左找一个小于6的数,再从左往右找一个大于6的数,然后交换他们。这里可以用两个变量i和j,分别指向序列最左边和最右边。我们为这两个变量起个好听的名字“哨兵i”和“哨兵j”。刚开始的时候让哨兵i指向序列的最左边(即i=1),指向数字6。让哨兵j指向序列的最右边(即j=10),指向数字8。
        
       首先哨兵j开始出动。因为此处设置的基准数是最左边的数,所以需要让哨兵j先出动,这一点非常重要(请自己想一想为什么)。哨兵j一步一步地向左挪动(即j--),直到找到一个小于6的数停下来。接下来哨兵i再一步一步向右挪动(即i++),直到找到一个数大于6的数停下来。最后哨兵j停在了数字5面前,哨兵i停在了数字7面前。

         现在交换哨兵i和哨兵j所指向的元素的值。交换之后的序列如下。
         6  1  2  5  9 3  4  7  10  8
      
    到此,第一次交换结束。接下来开始哨兵j继续向左挪动(再友情提醒,每次必须是哨兵j先出发)。他发现了4(比基准数6要小,满足要求)之后停了下来。哨兵i也继续向右挪动的,他发现了9(比基准数6要大,满足要求)之后停了下来。此时再次进行交换,交换之后的序列如下。
   6  1  2 5  4  3  9  7 10  8
       第二次交换结束,“探测”继续。哨兵j继续向左挪动,他发现了3(比基准数6要小,满足要求)之后又停了下来。哨兵i继续向右移动,糟啦!此时哨兵i和哨兵j相遇了,哨兵i和哨兵j都走到3面前。说明此时“探测”结束。我们将基准数6和3进行交换。交换之后的序列如下。
   3  1 2  5  4  6  9 7  10  8 
    
   到此第一轮“探测”真正结束。此时以基准数6为分界点,6左边的数都小于等于6,6右边的数都大于等于6。回顾一下刚才的过程,其实哨兵j的使命就是要找小于基准数的数,而哨兵i的使命就是要找大于基准数的数,直到i和j碰头为止。
   OK,解释完毕。现在基准数6已经归位,它正好处在序列的第6位。此时我们已经将原来的序列,以6为分界点拆分成了两个序列,左边的序列是“3  1 2  5  4”,右边的序列是“9  7  10  8”。接下来还需要分别处理这两个序列。因为6左边和右边的序列目前都还是很混乱的。不过不要紧,我们已经掌握了方法,接下来只要模拟刚才的方法分别处理6左边和右边的序列即可。现在先来处理6左边的序列现吧。
   左边的序列是“3  1  2 5  4”。请将这个序列以3为基准数进行调整,使得3左边的数都小于等于3,3右边的数都大于等于3。好了开始动笔吧。
   如果你模拟的没有错,调整完毕之后的序列的顺序应该是。
   2  1  3  5  4
       OK,现在3已经归位。接下来需要处理3左边的序列“2 1”和右边的序列“5 4”。对序列“2 1”以2为基准数进行调整,处理完毕之后的序列为“1 2”,到此2已经归位。序列“1”只有一个数,也不需要进行任何处理。至此我们对序列“2 1”已全部处理完毕,得到序列是“1 2”。序列“5 4”的处理也仿照此方法,最后得到的序列如下。
  1  2  3 4  5  6 9  7  10  8
      对于序列“9  7  10  8”也模拟刚才的过程,直到不可拆分出新的子序列为止。最终将会得到这样的序列,如下。
  1  2  3 4  5  6  7  8 9  10
      到此,排序完全结束。细心的同学可能已经发现,快速排序的每一轮处理其实就是将这一轮的基准数归位,直到所有的数都归位为止,排序就结束了。

  最后:

  文章出处:http://ahalei.blog.51cto.com/4767671/1365285点击打开链接
阅读更多 登录后自动展开
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页