hdu5438 Ponds[DFS,STL vector二维数组]

题目地址

hdu5438

题干

1559979-20190729092309421-857149473.png

代码和解释

解答本题时参考了一篇代码较短的博客,比较有意思,使用了STL vector二维数组。
可以结合下面的示例代码理解:

#include<iostream>
#include<vector>
using namespace std;
int main()
{
    vector<int> n[100];
    int i;
    for(i=0;i<100;i++){
        n[i].clear();
    }
    n[5].push_back(1);
    n[5].push_back(3);
    printf("%d\n",n[5].size());//为2
    printf("%d\n",n[5][0]);//为1
    printf("%d\n",n[5][1]);//为3
    //printf("%d\n",n[5]);//编译不通过 
    return 0;
}

可以理解为100行一维数组,每行长度不定,vector相当于变长数组。所以之前一维数组时对 n (vector<int> n)的操作在这里都对 n[i] (vector<int> n[100];int i;)应用。

本题的dfs跟网上的dfs基本模板差别有点大,不太易于作为dfs学习的开始,这里不详细解释。
这里是c++代码。

#include<iostream>
#include<vector>
#include<cstring>
#include<cstdio>
using namespace std;
int v[10010],f[10010],l[10010];//v存储每个池塘的值,f存储其是否被遍历过,l存储每个池塘连接管子数
vector<int> x[10010];//x存储每个池塘与哪个池塘相连的具体情况 
int tmp;//tmp是已经遍历的节点个数 
long long sum1,sum2;
void dfs(int t);
int main()
{
    int T,p,m,a,b;//T为样例组数,p为池塘数,m为连接组合数,a、b为每组连接中两个池塘的位置(编号) 
    int i,j;
    int flag; 
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&p,&m);
        sum1=0;
        memset(v,0,sizeof(v));
        memset(f,0,sizeof(f));
        memset(l,0,sizeof(l));//初始化
        for(i=0;i<10010;i++){
            x[i].clear();//初始化 
        }
        for(i=1;i<=p;i++){//从1开始到p结束,不然会错,因为a和b存储位置是从1开始的 
            scanf("%d",&v[i]); 
        }   
        for(i=0;i<m;i++){
            scanf("%d%d",&a,&b);
            x[a].push_back(b);//a与b相连 
            x[b].push_back(a);//b与a相连 
            l[a]++;//与a相连的池塘(管子)数加1 
            l[b]++;//与b相连的池塘(管子)数加1 
        }
        flag=1;
        while(flag==1){
            flag=0;//如果所有剩下的池塘连接管子数都大于等于2,则flag就会保持为0 
            for(i=1;i<=p;i++){//i从1开始到p 
                if(l[i]==0||l[i]==1){
                    //连接管子数小于2
                     flag=1;//只要这样的池塘还存在,就让flag为1,重新执行循环 
                     f[i]=1;//表示已经遍历过
                     for(j=0;j<x[i].size();j++){//x[i].size表示位置为i的这个池塘连接的管子数 
                        l[x[i][j]]--;//让所有与位置为i的池塘相连的池塘的连接管子数减1,即删除了位置为i的池塘与其他池塘的连接关系 
                     }
                     l[i]=-1;//表示连接管子数小于2 
                }
            }
        }
        //这样处理完后就只剩下连接管子数大于等于2的池塘,接下来用dfs判断每个连接组合是否包含奇数个池塘 
        for(i=1;i<=p;i++){//i从1开始到p 
            if(f[i]==0){
                //说明是还没有遍历过的
                sum2=0;
                tmp=0;
                dfs(i);//经过这个操作,tmp变成这个组合中池塘的数量,sum2变成这个组合中所有池塘值的和,并且这个组合中所有池塘都被遍历过了 
                if(tmp%2==1){//如果包含奇数个池塘 
                    sum1+=sum2;
                }    
            } 
        }
        printf("%lld\n",sum1);
    } 
    return 0;
}
void dfs(int t){
    int i;
    tmp++;
    f[t]=1;//表示已经遍历过,这样就不会对同一个组合中的每个池塘多次计算了 
    sum2+=v[t];//加上这个池塘的值
    for(i=0;i<x[t].size();i++){
        if(f[x[t][i]]==0){//对于与这个池塘相连的所有未被遍历过的池塘 
            dfs(x[t][i]);
        }
    }
    return; 
}

解本题时一开始又读错了题意,最终要求加起来的是组合中池塘个数为奇数的,而我理解成了组合中的含值为奇数的池塘的。

参考

HDU 5438.Ponds【2015 ACM/ICPC Asia Regional Changchun Online】【DFS】9月13

转载于:https://www.cnblogs.com/hardcoreYutian/p/11256509.html

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页