数据分析-回归分析读书笔记

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/afujin/article/details/50677092

解决三个问题

羽美想预测明天的冰茶销量

宫野想估算在一个新的地址开店的月销售额 

羽美想推测一下明天的特供蛋糕卖出去的可能性


回归分析的基础流程分六步



线性回归

羽美想预测明天的冰茶销量。羽美知道冰茶在天热的时候销量好。记录的店中冰茶的销售数据在下表,先画出散点图观察相关性,下图是明显的正相关


可以通过添加趋势线,勾选显示公式和R平方值,轻松就搞定回归方程和精度估计


也可以自己用公式来计算,先求x的平均,y的平均,Sxx,Syy,Syy,通用Se的对a,b的微分=0可以推导出a,b的计算公式


用公式计算R平方看看数据和方程的拟合程度,越接近1拟合程度越高

将上面的数据作为抽样数据,可以估算出总体的分布,用F分布检测总体回归系数,计算出的统计量的概率和0.05比较

对总体回归做估值,在置信度为95%时计算置信区间,计算温度在31度时的置信区间


在置信度为95%时候计算预测区间,计算温度在31度时的预测区间,预测区间的取值范围要比估值区间更宽一些


观察个体的标准化残差,当个体的标准化残差的绝对值大于3时,应该剔除后再进行回归分析

使用Durbin-Watson统计量评估序列自相关程度,如果值在2左右,说明不存在序列自相关

可用尝试多种形式的方程做回归,通过观察散点图判断拟合程度比较好的函数,选择回归后的R平方大的函数


多元回归

宫野想估算在一个新的地址开店的月销售额。宫野知道营业面积越大,距离车站越近,店铺的销售额就越大。各家门店的销售数据如下表,首先画出散点图观察相关性,通过Correl函数计算相关系数,一个是0.89,一个是-0.77都相关显著


用Linest函数计算回归系数,注意Linest计算出的系数是反序的,带入系数就有了回归方程,接下来计算Syy、Se,因为多元回归中R的计算会受到自变量个数的影响,就用修正自由度的R2公式


对总体回归检验回归系数和偏回归系数的检测统计量


其中用到的S11的求解过程,A的转置用“粘贴”的时候勾选“转置”,矩阵相乘法用MMult函数,矩阵求逆用MInverse函数,S11就是对角线上第一行第一列的元素

计算估值区间和预测区间,多元回归采用马氏距离避免欧式距离的量岗的问题


多元回归的自变量可以很多,可以对自变量进行组合,用修正自由度的R平方评估后选择最好的组合

多元回归将分类变量拆分为n-1个变量来处理,比如:性别有男、女和其他,拆分为性别男,性别女二个变量,用1,表示是,0表示否


逻辑回归

羽美想推测一下明天的特供蛋糕卖出去的可能性。羽美的经验告诉她周三六日客户比较多,好像和温度也有点关系。特供蛋糕的销售数据如下表,首先画出气泡图观察相关性,用气泡是因为点有密集的堆叠,通过Countif辅助列算出气泡的大小,就可以画出气泡吐了,然后用Correl函数计数相关系数


用规划求解完成逻辑回归系数的计算,因为探测计算中可能会出现销售预测的值过小,从而导致对数释然计算的溢出失败,需要调整销售预测函数=1/(1+EXP(-IF(G2>-700,G2,-700)))做最小值的溢出保护,同时要约束系数变量不为零--AND(NOT($B$24=0),NOT($C$24=0),NOT($D$24=0)),注明:--是转换成整数


下面计算R平方的,这里n1,n0分别是样本中卖出去的个数和没有卖出去的个数,逻辑回归中R平方是越小越显著,可以计算误判率,卖出和预测卖出的相关系数观察模型精确程度


总体系数的检测,用x2的2自由度检测


检测偏回归系数,用x2的1自由度检测


预测明天特供蛋糕卖出去的可能性,将明天是否周三六日和明天气温带入方程后得到0.44<0.5,估计是卖不出去了


Excel的相关功能

散点图观察相关性,添加趋势线

气泡图观察点密集情况下的相关性

Exp指数函数 Log对数函数 Ln自然对数函数

Correl相关函数检测二个变量之间的相关性

Linest函数计算线性回顾系数

FDist和FInv是F分布函数和逆函数

ChiDist和ChiInv是X2分布函数和逆函数

MMult、MInverse、Transpose是矩阵的乘法、逆函数、转置函数

规划求解参数绝对是个好东西



展开阅读全文

没有更多推荐了,返回首页