1264 线段相交
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注
描述
给出平面上两条线段的两个端点,判断这两条线段是否相交(有一个公共点或有部分重合认为相交)。 如果相交,输出"Yes",否则输出"No"。
Input
第1行:一个数T,表示输入的测试数量(1 <= T <= 1000)
第2 - T + 1行:每行8个数,x1,y1,x2,y2,x3,y3,x4,y4。(-10^8 <= xi, yi <= 10^8)
(直线1的两个端点为x1,y1 | x2, y2,直线2的两个端点为x3,y3 | x4, y4)
Output
输出共T行,如果相交输出"Yes",否则输出"No"。
Input示例
2
1 2 2 1 0 0 2 2
-1 1 1 1 0 0 1 -1
Output示例
Yes
No
题解
通过判断叉积来判断线段是否相交。代码如下:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <string>
#include <cstring>
#include <cmath>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <utility>
#define ll long long
using namespace std ;
struct point {double x , y ;} ;
double xmul ( point a , point b , point c ){
return ( b.x - a.x ) * ( c.y - a.y ) - ( b.y - a.y ) * ( c.x - a.x ) ;
}
int main(){
int t ;
cin >> t ;
while ( t -- ){
point a , b , c , d ;
cin >> a.x >> a.y >> b.x >> b.y >> c.x >> c.y >> d.x >> d.y ;
if ( xmul(a , b , c) * xmul(a , b , d) <= 0 && xmul(c , d , a) * xmul(c , d , b) <= 0 ){
cout << "Yes" << endl ;
}else{
cout << "No" << endl ;
}
}
return 0 ;
}