HDU——T The King’s Problem

http://acm.hdu.edu.cn/showproblem.php?pid=3861

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3254    Accepted Submission(s): 1151


Problem Description
In the Kingdom of Silence, the king has a new problem. There are N cities in the kingdom and there are M directional roads between the cities. That means that if there is a road from u to v, you can only go from city u to city v, but can’t go from city v to city u. In order to rule his kingdom more effectively, the king want to divide his kingdom into several states, and each city must belong to exactly one state.  What’s more, for each pair of city (u, v), if there is one way to go from u to v and go from v to u, (u, v) have to belong to a same state. And the king must insure that in each state we can ether go from u to v or go from v to u between every pair of cities (u, v) without passing any city which belongs to other state.
  Now the king asks for your help, he wants to know the least number of states he have to divide the kingdom into.
 

 

Input
The first line contains a single integer T, the number of test cases. And then followed T cases. 

The first line for each case contains two integers n, m(0 < n <= 5000,0 <= m <= 100000), the number of cities and roads in the kingdom. The next m lines each contains two integers u and v (1 <= u, v <= n), indicating that there is a road going from city u to city v.
 

 

Output
The output should contain T lines. For each test case you should just output an integer which is the least number of states the king have to divide into.
 

 

Sample Input
1 3 2 1 2 1 3
 

 

Sample Output
2
 

 

Source
 

 

Recommend
lcy   |   We have carefully selected several similar problems for you:   3863  3859  3868  3865  3862 
 
 
Tarjan缩点+最大独立集(强连通个数-最大匹配数)
  1 #include <cstring>
  2 #include <cstdio>
  3 
  4 #define min(a,b) (a<b?a:b)
  5 #define max(a,b) (a>b?a:b)
  6 const int N(5000+115);
  7 const int M(100000+5);
  8 int hed[N],sumedge,had[N];
  9 struct Edge
 10 {
 11     int v,next;
 12     Edge(int v=0,int next=0):v(v),next(next){}
 13 }edge[M],e[M];
 14 inline void ins(int u,int v,int *head,Edge *edge)
 15 {
 16     edge[++sumedge]=Edge(v,head[u]);
 17     head[u]=sumedge;
 18 }
 19 
 20 int tim,dfn[N],low[N];
 21 int top,instack[N],Stack[N];
 22 int sumcol,col[N],rd[N],cd[N];
 23 void DFS(int u)
 24 {
 25     low[u]=dfn[u]=++tim;
 26     Stack[++top]=u; instack[u]=1;
 27     for(int v,i=hed[u];i;i=edge[i].next)
 28     {
 29         v=edge[i].v;
 30         if(!dfn[v]) DFS(v), low[u]=min(low[u],low[v]);
 31         else if(instack[v]) low[u]=min(low[u],dfn[v]);
 32     }
 33     if(low[u]==dfn[u])
 34     {
 35         col[u]=++sumcol;
 36         for(;u!=Stack[top];top--)
 37         {
 38             col[Stack[top]]=sumcol;
 39             instack[Stack[top]]=0;
 40         }
 41         instack[u]=0; top--;
 42     }
 43 }
 44 
 45 int sumvis,vis[N],match[N];
 46 bool find(int u)
 47 {
 48     for(int v,i=had[u];i;i=e[i].next)
 49     {
 50         v=e[i].v;
 51         if(vis[v]==sumvis) continue;
 52         vis[v]=sumvis;
 53         if(!match[v]||find(match[v]))
 54         {
 55             match[v]=u;
 56             return true;
 57         }
 58     }
 59     return false;
 60 }
 61 
 62 inline void init()
 63 {
 64     tim=top=sumedge=sumcol=sumvis=0;
 65     memset(e,0,sizeof(e));
 66     memset(vis,0,sizeof(vis));
 67     memset(col,0,sizeof(col));
 68     memset(dfn,0,sizeof(dfn));
 69     memset(low,0,sizeof(low));
 70     memset(hed,0,sizeof(hed));
 71     memset(had,0,sizeof(had));
 72     memset(edge,0,sizeof(edge));
 73     memset(Stack,0,sizeof(Stack));
 74     memset(match,0,sizeof(match));
 75     memset(instack,0,sizeof(instack));
 76 }
 77 inline void read(int &x)
 78 {
 79     x=0; register char ch=getchar();
 80     for(;ch>'9'||ch<'0';) ch=getchar();
 81     for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
 82 }
 83 
 84 int main()
 85 {
 86     int t; read(t);
 87     for(int n,m;t--;init())
 88     {
 89         read(n),read(m);
 90         for(int u,v;m--;)
 91             read(u),read(v),ins(u,v,hed,edge);
 92         for(int i=1;i<=n;i++)
 93             if(!dfn[i]) DFS(i);
 94         for(int u=1;u<=n;u++)
 95             for(int v,i=hed[u];i;i=edge[i].next)
 96             {
 97                 v=edge[i].v;
 98                 if(col[u]!=col[v]) ins(col[u],col[v],had,e);
 99             }
100         int ans=0;
101         for(int i=1;i<=sumcol;i++)
102         {
103             sumvis++;
104             if(find(i)) ans++;
105         }
106         printf("%d\n",sumcol-ans);
107     }
108     return 0;
109 }
 

转载于:https://www.cnblogs.com/Shy-key/p/7470007.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值