PAT乙级1007. 素数对猜想 (20)

本文介绍了素数对猜想的基本概念,并给出了一个计算不超过指定数值N的满足猜想的素数对数量的程序实现方案。该程序首先定义了一个素数判断函数isPrime,然后使用此函数找出所有不超过N的素数,并检查每对相邻素数是否构成素数对。
摘要由CSDN通过智能技术生成

1007. 素数对猜想 (20)

让我们定义 dn 为:dn = pn+1 - pn,其中 pi 是第i个素数。显然有 d1=1 且对于n>1有 dn 是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。

现给定任意正整数N (< 105),请计算不超过N的满足猜想的素数对的个数。

输入格式:每个测试输入包含1个测试用例,给出正整数N。

输出格式:每个测试用例的输出占一行,不超过N的满足猜想的素数对的个数。

输入样例:
20
输出样例:
4

提示

第5个(最后一个)测试点,超时。原因在于素数判定效率。优化素数判定即可通过。那么怎样优化或者优化到怎样的程度呢? : 先判断是否大于2,若大于等于2则继续判断,若小于2则不是素数;再判断是否是偶数,是偶数则不是素数,否则继续判断,这时候就从3开始循环判断了。注意:循环终止的条件,影响效率。i <= sqrt(n);为最佳 ,若 i<=n/2+1; 同样的代码,可能会超时。

代码

#include<iostream>
#include<math.h>
using namespace std;
int isPrime(int n){
    int i;
    if (n < 2) return 0;
    else if (n == 2) return 1;
    else if (n % 2 == 0) return 0;
    else {
        for (i = 3 ; i <= sqrt(n); i += 2){
            if (n % i == 0) return 0;
        }
        return 1;
    }
}
int main(){
    int n;
    cin >> n;
    int count = 0;
    int result = 1;
    for (int i = 2;i <= n; i++){
        if (isPrime(i)){
            if (result + 2 == i){//判断前后素数是否相差2,即是否为素数对
                count++;
            }
            result = i;
        }
    }
    cout <<count;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值