hadoop基本概念

本文深入探讨了大数据的概念,分析了大数据产生的背景及其对传统数据处理技术的挑战。介绍了Hadoop这一大数据处理工具的核心组件,包括分布式文件系统HDFS、分布式运算编程框架MapReduce以及分布式资源调度平台YARN。详细阐述了HDFS的运行机制和工作机制,揭示了其如何通过跨多台服务器存储和管理数据,以及如何确保数据的安全性和可靠性。
摘要由CSDN通过智能技术生成

在互联网技术发展到现今阶段,大量日常、工作等事务产生的数据都已经信息化,人类产生的数据量相比以前有了爆炸式的增长,以前的传统的数据处理技术已经无法胜任,需求催生技术,一套用来处理海量数据的软件工具应运而生,这就是大数据!

 

换个角度说,大数据是:

1、有海量的数据

2、有对海量数据进行挖掘的需求

有对海量数据进行挖掘的软件工具(hadoopsparkstormflinktezimpala......

 

什么是hadoop

1hadoop有三个核心组件:

1.分布式文件系统:HDFS--实现将文件分布式存储在很多的服务器上

2.分布式运算编程框架:MAPREDUCE--实现在很多机器上分布式并行运算

3.分布式资源调度平台:YARN--帮用户调度大量的mapreduce程序,并合理分配运算资源

 

HDFS整体运行机制

hdfs:分布式文件系统

hdfs有着文件系统共同的特征

1.有目录结构,顶层目录是: /

2.系统中存放的就是文件

3.系统可以提供对文件的:创建、删除、修改、查看、移动等功能

 

hdfs跟普通的单机文件系统有区别:

1、单机文件系统中存放的文件,是在一台机器的操作系统中

2、hdfs的文件系统会横跨N多的机器

3、单机文件系统中存放的文件,是在一台机器的磁盘上

4、hdfs文件系统中存放的文件,是落在n多机器的本地单机文件系统(hdfs是一个基于linux本地文件系统之上的文件系统)

 

hdfs 的工作机制:

1、客户把一个文件存入hdfs,其实hdfs会把这个文件切块后,分散存储在N台linux机器系统中(负责存储文件块的角色:data node)<准确来说:切块的行为是由客户端决定的>

2、一旦文件被切块存储,那么,hdfs中就必须有一个机制,来记录用户的每一个文件的切块信息,及每一块的具体存储机器(负责记录块信息的角色是:name node)

3、为了保证数据的安全性,hdfs可以将每一个文件块在集群中存放多个副本(到底存几个副本,是由当时存入该文件的客户端指定的)

综述:一个hdfs系统,由一台运行了namenode的服务器,和N台运行了datanode的服务器组成!

 

转载于:https://www.cnblogs.com/djh222/p/11130768.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值