给定一个含有n个元素的整型数组a,求a中的所有元素的和。
要是不要 求用递归求解,那么此题便非常容易了,下面是一种容易想到的方法:
#include <stdio.h>
int main(void)
{
int a[] = {3, 7, 8, 2, 10};
int len = sizeof(a)/sizeof(a[0]);
int i, sum = 0;
for(i=0; i<len; i++)
{
sum += a[i];
}
printf("该数组的和为:%d\n", sum);
return 0;
}
该题问题在于如何使用递归上。如果使用递归则需要考虑递归如何开始以及递归的终止条件。
我们可以这样考虑:首先,如果一个数组的元素个数为0,那么其和自然也应该为0.
另外,如果元素个数为n,我们可以先求出前n-1个元素之和,然后再加上a[n-1]即可。那么这样
就可以完成递归程序了。代码如下:
#include <stdio.h>
int GetSum(int *a, int n)
{
return n==0 ? 0 : GetSum(a, n-1) + a[n-1];
}
int main(void)
{
int a[] = {3, 7, 8, 2, 10};
int len = sizeof(a)/sizeof(a[0]);
printf("%d\n",GetSum(a, len));
return 0;
}