转载:http://blog.csdn.net/iloveyoujelly/article/details/22941531
一、单选
1.假设一个主机ip为192.168.5.121,子网掩码为255.255.255.248,则该主机的网络号部分(包括子网号部分)为——
A.192.168.5.12B 192.168.5.121C 192.168.5.120D 192.168.5.32
1. 已知IP地址、子网掩码,求网络号?
http://www.cnblogs.com/gylei/archive/2012/12/17/2822480.html 该文将IP地址、子网掩码、网络号、主机号、广播地址都讲的比较透彻。主要的原则就是子网掩码能够将IP地址分解为网络号以及主机号两部分,网络地址是通过IP地址与子网掩码取“与”得到,主机地址是通过先将子网掩码取“非”,再与IP地址取“与”得到。
例如有一个C类地址为: 192.9.200.13
参考答案 C
2.64位系统上,定义的变量int*a[2][3]占据的——字节
A 4 B12 C 24 D 48
参考答案 D
3.Linux中使用df-h/home和du-sh/home所查看到的已使用的磁盘容量不同,可能的原因是——
A、命令不同,所以结果肯定不同B、两个命令参数有问题
C、运行中的进程打开的文件被删除导致D、Linux的特性导致的
参考答案 C
4.一个C语言程序在一台32位机器上运行。程序中定义了三个变量xyz,其中x和z是int,y是short。当x = 127,y = -9时,执行赋值语句 z = x+ y后 xyz的值分别是——
A、x =0000007FH,y= FFF9H,z= 00000076H
B、x =0000007FH,y= FFF9H,z= FFFF0076H
C、x =0000007FH,y= FFF7H,z= FFFF0076H
D、x =0000007FH,y= FFF7H,z= 00000076H
参考答案 D
5.有如下数组定义,int [][ ] myArray = new int[3][ ] = { new int [3]{5,6,2},
new int[5]{6,9,7,8,3},
new int[2]{3,2}};
则,myArray[2][2]的值是——
A、9 B、2 C、6 D、越界
参考答案 D
6.快速排序的期望运行时间复杂度是——
A、O(n^2)B、O(nlogn)C、O(n)D、O(2^n)
参考答案 B
7.在一个长度为n的顺序表中删除第i个元素,要移动——个,如果在第i前插入一个元素,则后移——个
A、n-i,n-i+1 B、n-i+1,n-i,C、n-i,n-i,D、n-i+1,n-i+1
参考答案 A
8.下面C++程序的输出是 ——
voidf(char *x)
{
x++;
*x = 'a';
}
int main()
{
char str[sizeof("hello")];
strcpy(str, "hello");
f(str);
cout << str;
return 0;
}
A、hello B、halloC、alloD、以上都不是
参考答案 B
9.有以下程序,其执行结果是___
charfun(char x, char y)
{
if(x)return y;
}
intmain()
{
int a ='0', b = '1', c = '2';
printf("%c\n",fun(fun(a,b), fun(b,c)));
}
A、函数调用出错 B、2C、0D、1
参考答案 B
10.当n = 6时,下列函数的返回值是——
int foo(int n)
{
if(n<= 2)
returnn;
return foo(n-1) +foo(n-2);
}
A、1 B、8 C、13、 D、21
参考答案 C
11.在一台主流配置的PC机上,调用f(35)所需要的时间大概是——
int f(int x)
{
int s =0;
while(x-->0)s+=f(x);
return max(s, 1);
}
A、几毫秒 B、几秒 C、几分钟 D、几小时
如果是oj的话,9个0的计算量,一般1秒左右(for循环int大小为10^9);但是我在我机子上测了:debug版本 3100s,release版本:180s。并且程序测试计算结果是1。(测试机配置CPU主频3.2GHz)。计算的推导公式貌似可以写成:an=2*an-1。
从 结果来看,为什么release比debug版本快这么多?release只是去掉了很多打印和调试信息,所以很快。
参考答案 C。说明:需要执行的总基本语句次数约为2^34*5=800*10^8。在release下和debug下,测试速度有很大差别,release大概数分钟,而debug大概需要一小时左右。
12.在一棵度为4的树T中,若有20个度为4的结点,10个度为3的结点,1个度为2的结点,10个度为1的结点,则树T的叶子结点个数是——
A、41 B、82 C、113 D、122
参考答案 B
说明:总度数即为总边数,总度数 + 1 =总结点数,设有n个叶子结点,则有 20 * 4+ 10 * 3 + 1 * 2 + 10 * 1 + 1 = 20 + 10 + 1 + 10 + n
得到n = 82
13.有堆栈S,按顺序ABCD进栈,则出栈顺序不可能存在的是——
A、DCBA B、BACDC、BADCD、CABD
参考答案 D
14.使用二分查找在有序数组a[n]中查找一个元素x的时间复杂度——
A、O(n) B、O(n^2)C、O(logn)D、O(nlogn)
参考答案 C
15.下图中标出了每条公路上最大的流量,请问,从S到T最大的流量是——
A、46 B、47 C、54 D、77
参考答案 A。解题时,每找出一条路径算出流量后,该路径上各段线路上的流量应扣除已经算过的流量,形成剩余流量。剩余流量为0的线段应将其删除(断开)。这种做法比较简单直观。
16.一天,有位年轻人来到张老板店花80元买了件原价160元的纪念品。这件礼物成本65元。结账时,年轻人掏出100元,张老板当时没有零钱,就用那100元向隔壁店家换了零钱,找给年轻人20.但是隔壁店家后来发现那100是假钱,张老板无奈还了100元。那么张老板在这次交易中损失了多少钱——
A、65 B、85 C、100 D、185
参考答案 B
17.2^100mod 7 = _
A、2 B、3 C、4 D、5
参考答案 A。原式 =((2^3)mod7)^33*2 mod 7
(a+b)/n的余数
(a+b) mod n = ( (a mod n) + (b mod n) ) mod n
(a + b) mod n = ( (a mod n) - (b mod n) + n) mod n
ab mod n = (a mod n)(b mod n) mod n
18.某公司在华东和华南两大区域开展业务,年底汇总业绩的时候发现,两大区域的月度客户转化率(=成为会员的客户数/访问店铺的客户数)分别提高了10%和5%。以下描述中正确的是——
A、尽管个子的月度转化率都有提高,但公司的整体月度转化率仍可能降低
B、市场对业务认可程度提高,越来越多访问店铺的客户成为会员
C、华东区的客户更容易被转化,该公司应该把业务重点放在这个区域
D、华南区的客户更需要提高转化,该公司应该把业务重点放在这个区域
说明:B
19.一次又8个人参加的网球比赛,根据选手实力。分别编号1——8,1号实力最强,而实力差距小于等于2才有可能爆冷。8人进行1/4决赛,胜出的4人继续半决赛,直到产生冠军。问有可能获得冠军的编号最大的选手是——
A、4 B、6 C、7 D、8
对阵表:6-4/5-3...4-2/6-✘/5-✘/3-1
78 56 13 24
7 6 3 4
6 4
6
有两个原则不会变。1,逆袭的概率小于0.5,否则就不叫逆袭了。2,即便存在逆袭,1~8中1号选手夺冠可能性最大;
夺冠的人肯定要打3场比赛,而且3场全胜。4要想3场全胜则可选的对手为(2、3、5、6、7、8),6要想3场全胜则可选的对手为(4、5、7、8)。
如果7可能的话,则需打三场,三场对决的编号只能是5,6,8. 假设决赛对决的是5,5也要打三场,编号只能是3,4,7. 在这个前提下继续分析7的半决赛对手,无论是6还是8,都找不到可以匹配的对手。 决赛对手是6或8类似分析就更不可能了,所以7不可能赢.
参考答案 B。3淘汰1、4淘汰2、6淘汰8、7淘汰5;4淘汰3、6淘汰7;6淘汰4获胜。
20.某国家非常重男轻女,若一户人家生了一个女孩,便再要一个,直到生下男孩为止。假设生男生女概率相等,问平均每户有几个女孩
A、 0.5 B、2/3C、1D、4/3
参考答案 C。没有任何因素影响男女出生的概率->生男生女的概率相等->男孩女孩应为1:1,说明每家都会有而且只有一个男孩(可能没有女孩儿,也可能有很多女孩),则平均下来每家应该有一个女孩。
二、不定向选择题
21.以下有关C语言的说法中,错误的是——
A、内存泄露一般是指程序申请了一块内存,使用完后,没有及时将这块内存释放,从而导致程序占用大量内存。
B、无法通过malloc(size_t)函数调用申请超过该机器物理内存大小的内存块。
C、无法通过内存释放函数free(void*)直接将某块已经使用完的物理内存直接还给操作系统
D、可以通过内存分配函数malloc(size_t)直接申请物理内存
22.下面关于二叉搜索树的正确说法包括——
A、待删除结点左子树和右子树时,只能使用左子树的最大值结点替换待删除结点。
B、给定一棵二叉搜索树的前序和后序结果,无法确定这棵二叉树
C、给定一棵二叉搜索树,根据节点值大小排序所需时间复杂度是线性的
D、给定一棵二叉搜索树,可以在线性时间复杂度内转化为平衡二叉搜索树
D
参考:可以通过后续遍历来完成转换,可以实现线性时间复杂度。先转左子树,再右子树,再处理根节点,而他不平衡只需要通过旋转来校正就是。旋转复杂度是O(1),树的遍历是O(n) ,就是相当于“遍历”的复杂度。
23.被称为中国雨人的周玮,仅仅使用1分钟的时间就可以对16位数字开14次方。那么,以下数字钟,不可能成为其候选答案的是——
A、11.0 B、12.0C、13.0D、14.0E、15.0
参考答案 ADE
24.有3个包,每个包里各放了两个球。包A里的球都是白色的,包B里的球都是黑色的,包C里的球一黑一白。现随机取一个包,并从中随机取一个球。发现该球是白色的。那么这个包里剩下的球也是白色的概率是——
A、0 B、0.33 C、0.5 D、0.66 E、1
参考答案 D
三、填空与问答
25.某电子眼睛分辨率640*360;(省略一段废话)。蓝牙4.0最大带宽24Mbps,请问能否通过该技术将每秒50帧真彩(24bit)画面传输至它的屏幕。如果是,请说明原因,如果否,说明理论上大约多久才能传送一帧。
参考答案:不能,640*360*24*50=2.76*10^8>24*1024*1024=2.5*10^7。
一幅图像时间为640*360*24/24M =0.23s>1/50。所以传输速度应该不够。
26.将N条长度为M的有序链表进行合并,合并以后的链表也保持有序,时间复杂度为——NM*logN
不是M*N?26题当然是堆排序啊.
归并问题?两两归并,先1 2归并,3 4归并,在重复就可以了,时间复杂度是NMlog(N)。总共logN次归并,每次NM,为NMlog(N)。
也可以用堆来做,结果一样,将N个链表头放入堆中,每次取出顶端节点插入,NM个元素都要进入堆,堆排序复杂度是log(n)、而后取出堆中元素。入堆的是链表,不是每个元素。我的思路是,一般的堆排序,一般是每个元素是一个数字,这里是每个元素一个链表。当前的值是链表头。每次选出来一个值是log(N),一共N*M个数,故是M*NlogN。只是不同的做法而已...结果一样很正常啊。
我觉得可以理解成两两归并,两两归并,复杂度容易算。我觉得用堆要好理解些 ,更直接
27.ABCD四人要在夜里过桥,分别耗时1、2、5、10分钟,只有一个手电筒,并且同时最多两人一起过。请安排方案让四人都过,用时最短,给出方案。
参考答案:17
说明:1、2先过,2留下1回来,5、10再过,2回来,1、2再过。
过河问题:(实质“统筹问题”:煎两面饼子、做饭顺序时间都属此类问题)
ab>
<a
cd>
<b
ab>
上述过程a和b可以互换: 2+1+10+2+2=17
这个问题本身并不太难,即使用简单的枚举法逐一尝试也能找到正确答案。
两人过桥后,需要把手电筒送来,因此最容易想到的是让那个最快的人担任来回送电筒的人。因此,这第一种办法是:先让甲乙过去(2分钟),甲回来(1分钟),甲丙过去(5分钟),甲回来(1分钟),甲丁再过去(10分钟),总共需要19分钟就可以让四个人都过去。
而正确答案是第二种方法:先让甲乙过去(2分钟),甲回来(1分钟),丙丁过去(10分钟),乙回来(2分钟),甲乙再过去(2分钟),总共需要17分钟就可以让四个人都过去。
在本题给的数字里,这里的一个关键点,是让两个最慢的人同时过桥! 类推下去,多人情形的过桥问题,两种方案的差异,只与最快的人、次快的人和次慢的人的单独过桥时间有关,而与其他人的快慢无关。
总结:其实方案一和方案二都是对的,题目改变不同数字,方案的结果就不同,总之就两种方法,到时具体算下就可以了。
28.下列代码是实现有序整数数组的二分查找,请指出其中的bug。
intbinary_search(int *array, int length, int key)
{
int start = 0, end = length - 1;
while (end > start)
{
int middle = (start + end) / 2; //bug
int tmp = array[middle];
if (tmp < key)
start = middle;
else if (tmp > key)
end = middle;
else
return middle;
}
return -1;
}
bug1:while(end>start)改为 end>=start否则可能会少判断,如length=1时。程序不会做任何判断返回-1
bug2:start=middle;end=middle;这两句改为start=middle+1;end=middle-1;因为start<=middle<=end;可能导致无法跳出循环。
如:array[0]=0,array[1]=1,array[2]=2,查找2
开始middle=(0+2)/2=1,key>array[middle];所以为start=middle=1;
第二次。middle=(1+2)/2=1,key>array[middle];所以为start=middle=1;
另外答案:3个bug
只要查找的数不存在就会死循环。
st
1:
start=mid+1
end=mid-1
2:判断条件反过来
3:初始情况的判断 (直接改end>=start然后mid+1 mid-1 行么?参考一下)
29.跳跃链表:(MIT麻省理工-算法导论公开课-12讲:跳跃表http://v.163.com/movie/2010/12/7/S/M6UTT5U0I_M6V2TTJ7S.html)
设当前在第i层第j列那个节点上。
i)如果第j列恰好只有i层(对应插入这个元素时第i次调用随机化模块时所产生的B决策,概率为1-p),则当前这个位置必然是从左方的某个节点向右跳过来的。
ii)如果第j列的层数大于i(对应插入这个元素时第i次调用随机化模块时所产生的A决策,概率为p),则当前这个位置必然是从上方跳下来的。(不可能从左方来,否则在以前就已经跳到当前节点上方的节点了,不会跳到当前节点左方的节点)
设C(k)为向上跳k层的期望步数(包括横向跳跃)
有:
C(0) = 0
C(k) = (1-p)(1+向左跳跃之后的步数)+p(1+向上跳跃之后的步数)
= (1-p)(1+C(k)) + p(1+C(k-1))
C(k) = 1/p + C(k-1)
C(k) = k/p
而跳跃表的高度又是logn级别的,故查找的复杂度也为logn级别