凸优化5:凸函数 Convex funtions

1、凸函数的定义1

凸函数:若函数 f : R n → R f:R^n \rightarrow R f:RnR是凸函数,则他需要满足两个条件:

  • d o m   f dom \space f dom f是凸集
  • ∀   x , y ∈ d o m   f , 0 ≤ θ ≤ 1 \forall \space x,y \in dom \space f,0 \leq \theta \leq 1  x,ydom f,0θ1,有 f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x+(1-\theta)y) \leq \theta f(x)+(1-\theta)f(y) f(θx+(1θ)y)θf(x)+(1θ)f(y)

凸函数的扩展:若函数 f : R n → R f:R^n \rightarrow R f:RnR是凸函数, d o m   f = C ⊆ R n dom \space f=C \subseteq R^n dom f=CRn,则凸函数的扩展

f ~ = { f ( x ) , x ∈ d o m   f + ∞ , x ∉ d o m   f \widetilde{f}=\left\{ \begin{matrix} f(x),x\in dom \space f\\ +\infty ,x \notin dom \space f \end{matrix} \right. f ={f(x),xdom f+,x/dom f
仍为凸函数

Ex1:示性函数是凸函数

凸集 C ⊆ R n C \subseteq R^n CRn
示 性 函 数 f c ( x ) = { 无 定 义 , x ∉ C 0 ,    x ∈ C 为 凸 函 数 示性函数f_c(x)=\left\{ \begin{matrix} 无定义,x \notin C \\ 0,\space\space x \in C \end{matrix} \right.为凸函数 fc(x)={,x/C0,  xC
示性函数的扩展
I c ( x ) = { + ∞ , x ∉ C 0 ,    x ∈ C 为 凸 函 数 I_c(x)=\left\{ \begin{matrix} +\infty,x \notin C \\ 0,\space\space x \in C \end{matrix} \right.为凸函数 Ic(x)={+,x/C0,  xC

2、凸函数的定义2:高维到低维

函数是凸的,当且仅当其在与其定义域相交的任何直线上都是凸的
f 为 凸 函 数 ⇔ ∀   x ∈ d o m   f , ∀   v , g ( t ) = f ( x + t v ) 为 凸 , 其 中 d o m   g = { t ∣ x + t v ∈ d o m   f } f为凸函数 \Leftrightarrow\\ \forall \space x \in dom \space f, \forall \space v, g(t)=f(x+tv)为凸,其中dom \space g=\{t \mid x+tv \in dom \space f\} f xdom f, v,g(t)=f(x+tv)dom g={tx+tvdom f}

3、凸函数的定义3:一阶条件(若函数一阶倒数存在)

f : R n → R f:R^n \rightarrow R f:RnR可微,即梯度 ▽ f \triangledown f f d o m   f dom \space f dom f上均存在,则 f f f为凸函数等价于:

  • d o m   f dom \space f dom f为凸
  • f ( y ) ≥ f ( x ) + ▽ f T ( x ) ( y − x ) , ∀   x , y ∈ d o m   f f(y) \geq f(x) + \triangledown f^T(x)(y-x),\forall \space x,y \in dom \space f f(y)f(x)+fT(x)(yx), x,ydom f

下图为等价定义的简单理解:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-02lNecOU-1642825921344)(D:\StudyFiles\ConvexOptimization\note\5.凸函数\5-1.png)]

证明一阶条件

首先考虑一维情况 f : R → R f:R \rightarrow R f:RR为凸函数 ⇔ d o m   f \Leftrightarrow dom \space f dom f为凸且 f ( y ) ≥ f ( x ) + f ′ ( x ) ( y − x ) f(y) \geq f(x)+f'(x)(y-x) f(y)f(x)+f(x)(yx)

充分性证明:
f 为 凸 , ∀   x , y ∈ d o m   f 为 凸 ∀   t , 0 ≤ t ≤ 1 , x + t ( y − x ) ∈ d o m   f f ( x + t ( y − x ) ) ≤ ( 1 − t ) f ( x ) + t f ( y ) t f ( y ) ≥ t f ( x ) + f ( x + t ( y − x ) ) − f ( x ) f ( y ) ≥ f ( x ) + f ( x + t ( y − x ) ) − f ( x ) t , 对 于 ∀   t 都 成 立 两 侧 对 t 取 极 限 , 有 : f ( y ) ≥ f ( x ) + f ′ ( x ) ( y − x ) 得 证 f为凸,\forall \space x,y \in dom \space f 为凸\\ \forall \space t,0 \leq t \leq 1,x+t(y-x)\in dom \space f\\ f(x+t(y-x)) \leq (1-t)f(x)+tf(y)\\ tf(y) \geq tf(x)+f(x+t(y-x))-f(x)\\ f(y) \geq f(x)+\frac{f(x+t(y-x))-f(x)}{t},对于\forall \space t都成立\\ 两侧对t取极限,有:f(y) \geq f(x)+f'(x)(y-x)得证\\ f x,ydom f t,0t1,x+t(yx)dom ff(x+t(yx))(1t)f(x)+tf(y)tf(y)tf(x)+f(x+t(yx))f(x)f(y)f(x)+tf(x+t(yx))f(x) ttf(y)f(x)+f(x)(yx)
必要性证明:
设 ∀   x ≠ y , x , y ∈ d o m   f ,   0 ≤ θ ≤ 1 构 造 z = θ x + ( 1 − θ ) y ∈ d o m   f { f ( x ) ≥ f ( z ) + f ′ ( z ) ( x − z ) f ( y ) ≥ f ( z ) + f ′ ( z ) ( y − z ) ⇒ θ f ( x ) + ( 1 − θ ) f ( y ) ≥ f ( z ) + [ θ ( x − z ) + ( 1 − θ ) ( y − z ) ] f ′ ( z ) ≥ f ( z ) + ( θ x + ( 1 − θ ) y − z ) f ′ ( z ) ⇒ θ f ( x ) + ( 1 − θ ) f ( y ) ≥ f ( z ) 当 x = y 时 , z = θ x + ( 1 − θ ) y = x f ( x ) ≥ f ( z ) 恒 成 立 , 得 证 设\forall \space x \neq y,x,y\in dom \space f,\space 0 \leq \theta \leq 1\\ 构造z=\theta x+(1-\theta)y \in dom \space f\\ \left\{ \begin{matrix} f(x) \geq f(z)+f'(z)(x-z)\\ f(y) \geq f(z)+f'(z)(y-z)\\ \end{matrix} \right.\\ \Rightarrow \theta f(x)+(1-\theta)f(y)\geq f(z)+[\theta(x-z)+(1-\theta)(y-z)]f'(z)\\ \geq f(z)+(\theta x+(1-\theta)y-z)f'(z)\\ \Rightarrow\theta f(x)+(1-\theta)f(y)\geq f(z)\\ 当x=y时,z=\theta x+(1-\theta)y=x\\ f(x) \geq f(z)恒成立,得证  x=y,x,ydom f, 0θ1z=θx+(1θ)ydom f{f(x)f(z)+f(z)(xz)f(y)f(z)+f(z)(yz)θf(x)+(1θ)f(y)f(z)+[θ(xz)+(1θ)(yz)]f(z)f(z)+(θx+(1θ)yz)f(z)θf(x)+(1θ)f(y)f(z)x=yz=θx+(1θ)y=xf(x)f(z)

下面扩展到高维情况

f u n c t i o n   f   i s   c o n v e x ⇔ d o m   f   i s   c o n v e x   a n d   f ( y ) ≥ f ( x ) + ▽ f T ( x ) ( y − x ) , ∀   x , y ∈ d o m   f function \space f \space is \space convex \Leftrightarrow dom \space f \space is \space convex \space and \space f(y) \geq f(x) + \triangledown f^T(x)(y-x),\forall \space x,y \in dom \space f function f is convexdom f is convex and f(y)f(x)+fT(x)(yx), x,ydom f

充分性证明:
要 证 : f 为 凸 函 数 ⇒ d o m   f 为 凸 , 且 f ( y ) ≥ f ( x ) + ▽ f T ( x ) ( y − x ) f 为 凸 函 数 , 则 由 第 一 个 定 义 可 知 , d o m   f 一 定 为 凸 g ( t ) = f ( t y + ( 1 − t ) x ) , t y + ( 1 − t ) x 是 仿 射 组 合 g ( t ) = f ( x + t ( y − x ) ) g ′ ( t ) = ▽ f T ( t y + ( 1 − t ) x ) ( y − x ) 由 定 义 2 以 及 一 维 情 况 有 : g ( t 1 ) ≥ g ( t 2 ) + g ′ ( t 2 ) ( t 1 − t 2 ) ∀   t 1 , t 2 都 成 立 , 令 t 1 = 1 , t 2 = 0 g ( 1 ) ≥ g ( 0 ) + g ′ ( 0 ) ⇒ f ( y ) ≥ f ( x ) + ▽ f T ( x ) ( y − x ) 得 证 要证:f为凸函数 \Rightarrow dom \space f为凸,且f(y) \geq f(x) + \triangledown f^T(x)(y-x)\\ f为凸函数,则由第一个定义可知,dom \space f一定为凸\\ g(t)=f(ty+(1-t)x),ty+(1-t)x是仿射组合\\ g(t)=f(x+t(y-x))\\ g'(t)=\triangledown f^T(ty+(1-t)x)(y-x)\\ 由定义2以及一维情况有:\\ g(t_1)\geq g(t_2)+g'(t_2)(t_1-t_2)\\ \forall \space t_1,t_2都成立,令t_1=1,t_2=0\\ g(1)\geq g(0)+g'(0)\\ \Rightarrow f(y) \geq f(x)+ \triangledown f^T(x)(y-x)得证 fdom ff(y)f(x)+fT(x)(yx)fdom fg(t)=f(ty+(1t)x),ty+(1t)x仿g(t)=f(x+t(yx))g(t)=fT(ty+(1t)x)(yx)2g(t1)g(t2)+g(t2)(t1t2) t1,t2t1=1,t2=0g(1)g(0)+g(0)f(y)f(x)+fT(x)(yx)
必要性证明:
要 证 : d o m   f 为 凸 , 且 f ( y ) ≥ f ( x ) + ▽ f T ( x ) ( y − x ) ⇒ f 为 凸 函 数 ∀   x , y ∈ d o m   f , t y + ( 1 − t ) x ∈ d o m   f t ~ y + ( 1 − t ~ ) x ∈ d o m   f 将 上 述 两 点 代 入 已 知 得 : f ( t y + ( 1 − t ) x ) ≥ f ( t ~ y + ( 1 − t ~ ) x ) + ▽ f ( t ~ y + ( 1 − t ~ ) x ) ( t y + ( 1 − t ) x − t ~ y − ( 1 − t ~ ) x ) ⇒ f ( t y + ( 1 − t ) x ) ≥ f ( t ~ y + ( 1 − t ~ ) x ) + ▽ f ( t ~ y + ( 1 − t ~ ) x ) ( y − x ) ( t − t ~ ) 定 义 函 数 g ( t ) = f ( t y + ( 1 − t ) x ) , g ( t ~ ) = f ( t ~ y + ( 1 − t ~ ) x ) g ′ ( t ~ ) = ▽ f T ( t ~ y + ( 1 − t ~ ) x ) ( y − x ) ⇒ g ( t ) ≥ g ( t ~ ) + g ′ ( t ~ ) ( t − t ~ ) 由 定 义 2 可 知 , f 为 凸 函 数 要证:dom \space f为凸,且f(y) \geq f(x) + \triangledown f^T(x)(y-x)\Rightarrow f为凸函数 \\ \forall \space x,y \in dom \space f,ty+(1-t)x \in dom \space f\\ \widetilde{t}y+(1-\widetilde{t})x \in dom \space f\\ 将上述两点代入已知得:\\ f(ty+(1-t)x)\geq f(\widetilde{t}y+(1-\widetilde{t})x)+\triangledown f(\widetilde{t}y+(1-\widetilde{t})x)(ty+(1-t)x-\widetilde{t}y-(1-\widetilde{t})x)\\ \Rightarrow f(ty+(1-t)x)\geq f(\widetilde{t}y+(1-\widetilde{t})x)+\triangledown f(\widetilde{t}y+(1-\widetilde{t})x)(y-x)(t-\widetilde{t})\\ 定义函数g(t)=f(ty+(1-t)x),g(\widetilde{t})=f(\widetilde{t}y+(1-\widetilde{t})x)\\ g'(\widetilde{t})=\triangledown f^T(\widetilde{t} y+(1-\widetilde{t})x)(y-x)\\ \Rightarrow g(t) \geq g(\widetilde{t})+g'(\widetilde{t})(t-\widetilde{t})\\ 由定义2可知,f为凸函数 dom ff(y)f(x)+fT(x)(yx)f x,ydom f,ty+(1t)xdom ft y+(1t )xdom ff(ty+(1t)x)f(t y+(1t )x)+f(t y+(1t )x)(ty+(1t)xt y(1t )x)f(ty+(1t)x)f(t y+(1t )x)+f(t y+(1t )x)(yx)(tt )g(t)=f(ty+(1t)x),g(t )=f(t y+(1t )x)g(t )=fT(t y+(1t )x)(yx)g(t)g(t )+g(t )(tt )2f

4、凸函数的定义4:二阶条件

f : R n → R f:R^n \rightarrow R f:RnR二阶可微,则 f f f为凸函数 ⇔ d o m   f \Leftrightarrow dom \space f dom f为凸, ▽ 2 f ( x ) ⪰ 0 , ∀   x ∈ d o m   f \triangledown^2 f(x) \succeq 0,\forall \space x \in dom \space f 2f(x)0, xdom f

此处需要知道,关于二阶条件与严格凸的关系:
▽ 2 f ( x ) ≻ 0 ⇒ 严 格 凸 严 格 凸 ⇏ ▽ 2 f ( x ) ≻ 0 \triangledown^2 f(x) \succ 0 \Rightarrow 严格凸\\ 严格凸 \nRightarrow \triangledown^2 f(x) \succ 0 2f(x)02f(x)0
Ex1:二次函数
f : R n → R , d o m   f = R n f ( x ) = 1 2 x T P x + q T x + r , P ∈ S n , q ∈ R n , r ∈ R ▽ 2 f ( x ) = P f:R^n \rightarrow R,dom \space f=R^n\\ f(x)=\frac{1}{2}x^TPx+q^Tx+r,P\in S^n,q\in R^n,r\in R\\ \triangledown^2f(x)=P f:RnR,dom f=Rnf(x)=21xTPx+qTx+r,PSn,qRn,rR2f(x)=P
二次函数 ▽ 2 f ( x ) ≻ 0 ⇔ 严 格 凸 \triangledown^2f(x) \succ 0 \Leftrightarrow 严格凸 2f(x)0

Ex2
f ( x ) = 1 x 2 , x ≠ 0 , x ∈ R f ′ ′ ( x ) = 6 x − 4 f ( x ) 虽 正 定 , 但 f ( x ) 不 是 凸 函 数 , 因 为 d o m   f 不 是 凸 集 f(x)=\frac{1}{x^2},x \neq 0,x \in R\\ f''(x)=6x^{-4}\\ f(x)虽正定,但f(x)不是凸函数,因为dom \space f不是凸集 f(x)=x21,x=0,xRf(x)=6x4f(x)f(x)dom f

Ex3:仿射函数

f ( x ) = A x + b , ▽ 2 f ( x ) = 0 ⇒ f(x)=Ax+b,{\triangledown}^2f(x)=0 \Rightarrow f(x)=Ax+b,2f(x)=0凸函数

Ex4:指数函数

f ( x ) = e a x , x ∈ R , ▽ 2 f ( x ) = a 2 e a x ⇒ f(x)=e^{ax},x\in R, \triangledown^2f(x)=a^2e^{ax}\Rightarrow f(x)=eax,xR,2f(x)=a2eax凸函数

Ex5:幂函数
f ( x ) = x a , x ∈ R + + , f ′ ′ ( x ) = a ( a − 1 ) x a − 2 ▽ 2 f ( x ) = { ≥ 0 , a ≥ 1   o r   a ≤ 0 ≤ 0 , 0 ≤ a ≤ 1 f(x)=x^a,x\in R_{++},f''(x)=a(a-1)x^{a-2}\\ \triangledown^2f(x)=\left\{ \begin{matrix} \geq 0,a \geq 1 \space or \space a \leq 0\\ \leq 0,0 \leq a \leq 1 \end{matrix} \right. f(x)=xa,xR++,f(x)=a(a1)xa22f(x)={0,a1 or a00,0a1

Ex6:绝对值幂函数
f ( x ) = ∣ x ∣ P , x ∈ R P 较 为 合 适 时 : f ′ ( x ) = { P x P − 1 , x ≥ 0 − P ( − x ) P − 1 , x < 0 f ′ ′ ( x ) = { P ( P − 1 ) x P − 2 , x ≥ 0 P ( P − 1 ) x P − 2 , x < 0 P > 1 时 , 函 数 为 凸 P = 1 时 , ∣ x ∣ 不 可 导 , 但 是 仍 为 凸 f(x)=|x|^P,x \in R\\ P较为合适时:f'(x)=\left\{ \begin{matrix} Px^{P-1},x \geq 0\\ -P(-x)^{P-1},x<0 \end{matrix} \right.\\ f''(x)=\left\{ \begin{matrix} P(P-1)x^{P-2},x \geq 0\\ P(P-1)x^{P-2},x<0 \end{matrix} \right.\\ P>1时,函数为凸\\ P=1时,|x|不可导,但是仍为凸 f(x)=xP,xRPf(x)={PxP1,x0P(x)P1,x<0f(x)={P(P1)xP2,x0P(P1)xP2,x<0P>1P=1x
P ≥ 1 P\geq 1 P1时,绝对值幂函数为凸

Ex7:对数函数
f ( x ) = log ⁡ ( x ) , x ∈ R + + f ′ ( x ) = 1 x , f ′ ′ ( x ) = − 1 x 2 < 0 f(x)=\log(x),x\in R_{++}\\ f'(x)=\frac{1}{x},f''(x)=-\frac{1}{x^2}<0 f(x)=log(x),xR++f(x)=x1,f(x)=x21<0
严格凹函数

Ex8:负熵
f ( x ) = x log ⁡ ( x ) , x ∈ R + + f ′ ( x ) = 1 + log ⁡ ( x ) , f ′ ′ ( x ) = 1 x > 0 f(x)=x\log(x),x\in R_{++}\\ f'(x)=1+\log(x),f''(x)=\frac{1}{x}>0 f(x)=xlog(x),xR++f(x)=1+log(x),f(x)=x1>0
严格凸函数

Ex9:范数

R n R^n Rn空间范数 P ( x ) , x ∈ R n P(x),x\in R^n P(x),xRn,范数定义 { P ( x ) ≥ 0   a n d   P ( x ) = 0 ⇔ x = 0 P ( a x ) = ∣ a ∣ P ( x ) P ( x + y ) ≤ P ( x ) + P ( y ) \left\{ \begin{matrix} P(x) \geq 0 \space and \space P(x)=0 \Leftrightarrow x=0\\ P(ax)=|a|P(x)\\P(x+y) \leq P(x)+P(y)\end{matrix} \right. P(x)0 and P(x)=0x=0P(ax)=aP(x)P(x+y)P(x)+P(y)

∀   x , y ∈ R n , ∀   0 ≤ θ ≤ 1 P ( θ x + ( 1 − θ ) y ) ≤ P ( θ x ) + P ( ( 1 − θ ) y ) = θ P ( x ) + ( 1 − θ ) P ( y ) \forall \space x,y \in R^n,\forall \space 0 \leq \theta \leq 1\\ P(\theta x+(1-\theta)y) \leq P(\theta x)+P((1-\theta)y)=\theta P(x)+(1-\theta)P(y)\\  x,yRn, 0θ1P(θx+(1θ)y)P(θx)+P((1θ)y)=θP(x)+(1θ)P(y)
一定是凸函数

Ex10:零范数(不是范数)

∣ ∣ x ∣ ∣ 0 = ||x||_0= x0=非0元素的数目,不是凸函数

Ex11:极大值函数
f ( x ) = m a x { x 1 , ⋯   , x n } , x ∈ R n ∀   x , y ∈ R n , 0 ≤ θ ≤ 1 f ( θ x + ( 1 − θ ) y ) = m a x { θ x i + ( 1 − θ ) y i } , i = 1 , ⋯   , n ≤ θ m a x { x 1 } + ( 1 − θ ) m a x { y i } , i = 1 , ⋯   , n = θ f ( x ) + ( 1 − θ ) f ( y ) f(x)=max\{x_1,\cdots,x_n\},x \in R^n\\ \forall \space x,y \in R^n,0 \leq \theta \leq 1\\ f(\theta x+(1-\theta)y)=max\{\theta x_i+(1-\theta)y_i\},i=1,\cdots,n\\ \leq \theta max\{x_1\}+(1-\theta)max\{y_i\},i=1,\cdots,n\\ =\theta f(x)+(1-\theta)f(y) f(x)=max{x1,,xn},xRn x,yRn,0θ1f(θx+(1θ)y)=max{θxi+(1θ)yi},i=1,,nθmax{x1}+(1θ)max{yi},i=1,,n=θf(x)+(1θ)f(y)
为凸函数

Ex12 l o g − s u m − u p log-sum-up logsumup函数,解析逼近
f ( x ) = log ⁡ ( e x 1 + ⋯ + e x n ) , x ∈ R n m a x { x 1 , ⋯   , x n } ≤ f ( x ) ≤ m a x { x 1 , ⋯   , x n } + log ⁡ n ∂ f ∂ x i = e x i e x 1 + ⋯ + e x n i ≠ j , ∂ 2 f ∂ x i ∂ x j = − e x i e x j ( e x 1 + ⋯ + e x n ) 2 i = j , ∂ 2 f ∂ x i ∂ x j = − e x i e x i + e x i ( e x 1 + ⋯ + e x n ) ( e x 1 + ⋯ + e x n ) 2 L e t    z = [ e x 1 , ⋯   , e x n ] T H = 1 ( 1 T z ) 2 { [ e x 1 ( e x 1 + ⋯ + e x n ) ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ e x 1 ( e x 1 + ⋯ + e x n ) ] − [ e x 1 ⋮ e x n ] [ e x 1 ⋯ e x n ] } = 1 1 T z ( ( 1 T z ) d i a g { z } − z z T ) = 1 1 T z k ∀   v ∈ R n , v T k v ≥ 0 v T k v = ( 1 T z ) v T d i a g { z } v − v T z z T v = ( ∑ i z i ) ( ∑ i v i 2 z i ) − ( ∑ i v i z i ) 2 a i = v i z i , b i = z i = ( b T b ) ( a T a ) − ( a T b ) 2 ≥ 0 ( C a u c h y − S c h w a r t s 不 等 式 ) 得 证 f(x)=\log(e^{x_1}+\cdots+e^{x_n}),x \in R^n\\ max\{x_1,\cdots,x_n\} \leq f(x) \leq max\{x_1,\cdots,x_n\}+\log n\\ \frac{\partial{f}}{\partial{x_i}}=\frac{e^{x_i}}{e^{x_1}+\cdots+e^{x_n}}\\ i \neq j, \frac{\partial^2{f}}{\partial{x_i}\partial{x_j}}=\frac{-e^{x_i}e^{x_j}}{(e^{x_1}+\cdots+e^{x_n})^2}\\ i=j,\frac{\partial^2{f}}{\partial{x_i}\partial{x_j}}=\frac{-e^{x_i}e^{x_i}+e^{x_i}(e^{x_1}+\cdots+e^{x_n})}{(e^{x_1}+\cdots+e^{x_n})^2}\\ Let \space\space z=[e^{x_1},\cdots,e^{x_n}]^T\\ H=\frac{1}{(1^Tz)^2}\{\left[ \begin{matrix} e^{x_1}(e^{x_1}+\cdots+e^{x_n}) & \cdots & 0 \\ \vdots & \ddots & \vdots\\0 & \cdots & e^{x_1}(e^{x_1}+\cdots+e^{x_n}) \end{matrix} \right]-\left[ \begin{matrix} e^{x_1} \\ \vdots \\ e^{x_n} \end{matrix} \right]{\left[ \begin{matrix} e^{x_1} \cdots e^{x_n} \end{matrix} \right]}\}\\ =\frac{1}{1^Tz}((1^Tz)diag\{z\}-zz^T)\\ =\frac{1}{1^Tz} k\\ \forall \space v \in R^n,v^Tkv \geq 0\\ v^Tkv=(1^Tz)v^Tdiag\{z\}v-v^Tzz^Tv\\ =(\sum_i z_i)(\sum_i v^2_iz_i)-(\sum_i v_iz_i)^2\\ a_i=v_i \sqrt{z_i},b_i=\sqrt{z_i}\\ =(b^Tb)(a^Ta)-(a^Tb)^2 \geq 0(Cauchy-Schwarts不等式)得证 f(x)=log(ex1++exn),xRnmax{x1,,xn}f(x)max{x1,,xn}+lognxif=ex1++exnexii=j,xixj2f=(ex1++exn)2exiexji=j,xixj2f=(ex1++exn)2exiexi+exi(ex1++exn)Let  z=[ex1,,exn]TH=(1Tz)21{ex1(ex1++exn)00ex1(ex1++exn)ex1exn[ex1exn]}=1Tz1((1Tz)diag{z}zzT)=1Tz1k vRn,vTkv0vTkv=(1Tz)vTdiag{z}vvTzzTv=(izi)(ivi2zi)(ivizi)2ai=vizi ,bi=zi =(bTb)(aTa)(aTb)20(CauchySchwarts)

Ex13:几何平均

f ( x ) = ( x 1 ⋯ x n ) 1 n , x ∈ R + + n f(x)=(x_1 \cdots x_n)^{\frac{1}{n}},x \in R^n_{++} f(x)=(x1xn)n1,xR++n,是凹函数

Ex14:行列式对数
f ( x ) = log ⁡ d e t ( x ) , d o m   f = S + + n n = 1 时 , 凹 函 数 n > 1 时 , ∀   z ∈ S + + n , ∀   t ∈ R , v ∈ S n z + t v ∈ S + + n g ( t ) = f ( z + t v ) = log ⁡ d e t ( z + t v ) = log ⁡ d e t { z 1 2 ( I + t z − 1 2 v z − 1 2 ) z 1 2 } = log ⁡ d e t ( z ) + ∑ i = 1 n log ⁡ ( 1 + t λ i ) f(x)=\log det(x),dom \space f=S^n_{++}\\ n=1时,凹函数\\ n>1时,\forall \space z \in S^n_{++},\forall \space t \in R,v \in S^n\\ z+tv \in S^n_{++}\\ g(t)=f(z+tv)=\log det(z+tv)\\ =\log det\{z^\frac{1}{2}(I+tz^{-\frac{1}{2}}vz^{-\frac{1}{2}})z^\frac{1}{2}\}\\ =\log det(z)+\sum^n_{i=1} \log(1+t\lambda_i) f(x)=logdet(x),dom f=S++nn=1n>1 zS++n, tR,vSnz+tvS++ng(t)=f(z+tv)=logdet(z+tv)=logdet{z21(I+tz21vz21)z21}=logdet(z)+i=1nlog(1+tλi)
其中: λ i : z − 1 2 v z − 1 2 \lambda_i:z^{-\frac{1}{2}}vz^{-\frac{1}{2}} λi:z21vz21的第 i i i个特征值, z − 1 2 v z − 1 2 z^{-\frac{1}{2}}vz^{-\frac{1}{2}} z21vz21是对称矩阵,可以分解成 Q Λ Q T Q \varLambda Q^T QΛQT,其中 Q Q T = I , d e t Q = d e t Q T = 1 QQ^T=I,detQ=detQ^T=1 QQT=I,detQ=detQT=1
d e t ( I + t z − 1 2 v z − 1 2 ) = d e t ( Q Q T + Q t Λ Q T ) = d e t Q ⋅ d e t ( I + t Λ ) ⋅ d e t Q T = d e t ( I + t Λ ) = Π i = 1 n ( 1 + t λ i ) det(I+tz^{-\frac{1}{2}}vz^{-\frac{1}{2}})=det(QQ^T+Qt\varLambda Q^T)\\ =detQ \cdot det(I+t \varLambda) \cdot detQ^T\\ =det(I+t\varLambda)=\Pi_{i=1}^n(1+t\lambda_i) det(I+tz21vz21)=det(QQT+QtΛQT)=detQdet(I+tΛ)detQT=det(I+tΛ)=Πi=1n(1+tλi)

g ′ ( t ) = ∑ i λ i 1 + t λ i g ′ ′ ( t ) = ∑ i − λ i 2 ( 1 + t λ i ) 2 ≤ 0 g'(t)=\sum_i \frac{\lambda_i}{1+t\lambda_i}\\ g''(t)=\sum_i \frac{-\lambda^2_i}{(1+t\lambda_i)^2} \leq 0 g(t)=i1+tλiλig(t)=i(1+tλi)2λi20

g ( t ) g(t) g(t)为凹函数,故 f f f为凹函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值