$P1194 买礼物$

\(problem\)

简单的说 这是一道最小生成树的模板题(背板子就行了
然而刚看到这题 还不知道什么意思。
所以的话 考虑建边
怎么建边呢? 看到这题毫无头绪
\(i\) 件物品对 \(j\) 有优惠的话就建边 然后从 \(0\) 向各点连边权为 \(a\) 的边

inline void Add(int u,int v,int w) {
    cnt ++ ;
    edge[cnt] = node{u,v,w};
    return ;
}
    for(register int i=1;i<=b;i++)
        for(register int j=1;j<=b;j++) {
            int x = In() ;
            if(i<j and x) Add(i,j,x) ;
        }
    for(register int i=1;i<=b;i++) Add(0,i,a) ;

建完边按权值排序跑\(kruskal\)。这就\(AC\)了。

完整代码

#ifdef Dubug

#endif
#include <bits/stdc++.h>
using namespace std;
typedef long long LL ;
inline LL In() { LL res(0),f(1); register char c ;
    while(isspace(c=getchar())) ; c == '-'? f = -1 , c = getchar() : 0 ;
    while(res = (res << 1) + (res << 3) + (c & 15) , isdigit(c=getchar())) ;
    return res * f ;
}
int a,b;
struct node{
    int u,v,w;
};
const int N = 1 << 9;
node edge[N*N] ;
int fa[N<<1] ;
bool cmp (node x,node y) {
    return x.w < y.w ;
}
int cnt (0) ;
inline void Add(int u,int v,int w) {
    cnt ++ ;
    edge[cnt] = node{u,v,w};
    return ;
}
inline int find(int x) {
    return fa[x] == x ? fa[x] : fa[x] = find(fa[x]) ;
}
inline void merge(int x,int y) {
    fa[x] = fa[y] ;
    return ;
}
inline void kruskal() {
    LL ans (0) , v (0) ;
    sort(edge+1,edge+cnt+1,cmp) ;
    for(register int i=1;i<=cnt;i++) {
        int x = find(edge[i].u) , y = find(edge[i].v) ;
        if(x == y) continue ;
        ans += edge[i].w ;
        merge(x,y) ;
        if(++v == b) break ;
    }
    cout << ans << endl ;
    return ;
}
signed main() {
    a = In() , b = In() ;
    for(register int i=0;i<=b;i++) fa[i] = i ;
    for(register int i=1;i<=b;i++)
        for(register int j=1;j<=b;j++) {
            int x = In() ;
            if(i<j and x) Add(i,j,x) ;
        }
    for(register int i=1;i<=b;i++) Add(0,i,a) ;
    return kruskal() , 0 ;
}

转载于:https://www.cnblogs.com/qf-breeze/p/10585456.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值