bzoj3654 图样图森破

非常好的一道题

我们把每个串正反拆成两个串,对于每个正串的所有节点,我们对他们和其他反串的起始位置进行判断lcp,如果这个节点后面的字符串和某个反串的lcp长度等于这个节点后面的字符串长度,那么我们就从这个节点向那个反串的开头连一个边权为二倍长度的边,如果lcp长度等于反串的总长时,我们就连向该节点后面的长度的节点,边权也是二倍lcp的长度,如果lcp不满的话,就连向T,都满的话,直接输出inf,另外,对于每个以串起始位置为左端点的回文串,我们从S向这个串后面的节点连边权为长度的边,可以发现这样在全图跑一个最长路就是最终的答案,如果有环就是inf;

证明什么的比较显然,画画图就出来了。

貌似还有更快的dfs做法,但是我不会。

  1 #include <cstdio>
  2 #include <cstring>
  3 #include <iostream>
  4 #include <algorithm>
  5 #include <cmath>
  6 #include <queue>
  7 #define N 200505
  8 using namespace std;
  9 int n,m,len[105],zzh;
 10 char s[105][N];
 11 namespace graph{
 12     int e=1,head[N],S,pp[N];
 13     struct edge{
 14         int v,w,next;
 15     }ed[N<<7];
 16     void add(int u,int v,int w){
 17         if(u==v)return;
 18         if(v==S+1){
 19             if(pp[u]){ed[pp[u]].w=max(ed[pp[u]].w,w);return;}
 20             else pp[u]=e;
 21         }
 22         ed[e].v=v;ed[e].w=w;
 23         ed[e].next=head[u];head[u]=e++;
 24     }
 25     long long ans,D[N];
 26     bool vis[N],flag=0;
 27     void dfs(int x,long long dis){
 28         if(flag)return;
 29         D[x]=dis;ans=max(ans,dis);vis[x]=1;
 30         for(int i=head[x];i;i=ed[i].next){
 31             int v=ed[i].v;
 32             if(vis[v]){flag=1;return;}
 33             if(D[v]<=(long long)dis+ed[i].w)dfs(v,dis+ed[i].w);
 34         }vis[x]=0;
 35     }
 36     void work(){
 37         dfs(S,0);
 38         if(flag)puts("Infinity");
 39         else printf("%d\n",ans);
 40     }
 41 }
 42 namespace manacher{
 43     int mx,pos,cnt,num[N],r[N],n;
 44     char s[N];
 45     void manacher(char *ch){
 46         n=strlen(ch);
 47         for(int i=0;i<n;i++)s[i]=ch[i];
 48         for(int i=n-1;~i;i--)s[2*i]=s[i],s[2*i+1]='#';n<<=1;
 49         mx=pos=cnt=0;
 50         num[++cnt]=0;
 51         for(int i=0;i<n;i++){
 52             if(i<mx)r[i]=min(r[2*pos-i],mx-i);
 53             else r[i]=1;
 54             while(i-r[i]>=0&&i+r[i]<n&&s[i-r[i]]==s[i+r[i]])r[i]++;
 55             if(i+r[i]>mx)pos=i,mx=i+r[i];
 56             if(i-r[i]+1==0)num[++cnt]=((i+r[i]-1)>>1)+1;
 57             if(i&1)graph::ans=max(graph::ans,(long long)(r[i]>>1)<<1);
 58             else graph::ans=max(graph::ans,(long long)(((r[i]+1)>>1)<<1)-1);
 59         }
 60     }
 61 }
 62 namespace sa{
 63     int buc[N],wa[N],wb[N];
 64     int sa[N],rank[N],height[N],r[N],n;
 65     char s[N];
 66     bool cmp(int *d,int a,int b,int c){
 67         return d[a]==d[b]&&d[a+c]==d[b+c];
 68     }
 69     void getheight(int n){
 70         int i,j,k=0;
 71         for(i=0;i<n;i++)rank[sa[i]]=i;
 72         for(i=0;i<n;height[rank[i++]]=k)
 73             for(k?k--:0,j=sa[rank[i]-1];r[i+k]==r[j+k];k++);
 74         return ;
 75     }
 76     void da(int n,int m=130){
 77         int i,j,p,*x=wa,*y=wb;
 78         for(i=0;i<m;i++)buc[i]=0;
 79         for(i=0;i<n;i++)buc[x[i]=r[i]]++;
 80         for(i=1;i<m;i++)buc[i]+=buc[i-1];
 81         for(i=n-1;~i;i--)sa[--buc[x[i]]]=i;
 82         for(j=1,p=0;p<n;j<<=1,m=p){
 83             for(p=0,i=n-j;i<n;i++)y[p++]=i;
 84             for(i=0;i<n;i++)if(sa[i]>=j)y[p++]=sa[i]-j;
 85             for(i=0;i<m;i++)buc[i]=0;
 86             for(i=0;i<n;i++)buc[x[y[i]]]++;
 87             for(i=1;i<m;i++)buc[i]+=buc[i-1];
 88             for(i=n-1;~i;i--)sa[--buc[x[y[i]]]]=y[i];
 89             for(swap(x,y),i=1,x[sa[0]]=0,p=1;i<n;i++)
 90                 x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
 91         }
 92         getheight(n);
 93     }
 94     int minn[N][20];
 95     void st_init(){
 96         for(int i=1;i<=n;i++)minn[i][0]=height[i];
 97         for(int j=1;(1<<j)<=n;j++)
 98             for(int i=1;i+(1<<j)-1<=n;i++)
 99                 minn[i][j]=min(minn[i][j-1],minn[i+(1<<(j-1))][j-1]);
100     }
101     int work(){
102         da(n+1);
103         st_init();
104     }
105     int find(int x,int y){
106         x=rank[x],y=rank[y];
107         if(x>y)swap(x,y);x++;
108         int k=0;
109         while(x+(1<<k+1)-1<=y)k++;
110         return min(minn[x][k],minn[y-(1<<k)+1][k]);
111     }
112 }
113 int main(){
114     scanf("%d",&n);
115     for(int i=1;i<=n;i++){
116         scanf("%s",s[++m]);
117         len[m]=len[m+1]=strlen(s[m]);m++;
118         for(int i=0;i<len[m];i++)
119             s[m][i]=s[m-1][len[m]-1-i];
120         len[m-1]+=len[m-2];len[m]+=len[m-1];
121     }
122     for(int i=1;i<=m;i++){
123         for(int j=0;j<len[i]-len[i-1];j++)
124             sa::r[sa::n++]=s[i][j];
125         sa::r[sa::n++]='#';
126     }
127     memset(graph::pp,0,sizeof graph::pp);
128     memset(graph::head,0,sizeof graph::head);
129     sa::work();
130     graph::S=len[m];
131     for(int i=1;i<=m;i++){
132         manacher::manacher(s[i]);
133         for(int j=1;j<=manacher::cnt;j++)if(j==1||manacher::num[j]!=manacher::num[j-1]){
134             if(manacher::num[j]==len[i]-len[i-1]){puts("Infinity");return 0;}
135             graph::add(graph::S,len[i-1]+manacher::num[j],manacher::num[j]);
136         }
137         for(int j=0;j<len[i]-len[i-1];j++){
138             for(int k=(i&1)?2:1;k<=m;k+=2){
139                 int f=sa::find(len[i-1]+i-1+j,len[k-1]+k-1);
140                 int l1=len[i]-len[i-1]-j,l2=len[k]-len[k-1];
141                 if(f==l1&&f==l2){puts("Infinity");return 0;}
142                 if(f){
143                     if(f!=l1&&f!=l2)graph::add(len[i-1]+j,graph::S+1,2*f);                                   
144                     if(f==l1)graph::add(len[i-1]+j,len[k-1]+(len[i]-len[i-1]-j),2*f);
145                     if(f==l2)graph::add(len[i-1]+j,len[i-1]+j+f,2*f);
146                 }
147             }
148         }
149     }
150     graph::work();
151     return 0;
152 }
View Code

 

转载于:https://www.cnblogs.com/Ren-Ivan/p/8370548.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值