
1、bp神经网络收敛问题
当然是越慢。因为已经接近最低点,训练也进入误差曲面的平坦区,每次搜索的误差下降速度是减慢的。这一点可以在BP神经网络的误差调整公式上看出。
事实上收敛速度逐渐减慢,这是正常的,如果一定要避免这种情况,可以自适应改变学习率。
由于传统BP算法的学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。
BP算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。
谷歌人工智能写作项目:小发猫

2、怎样可以提高神经网络的收敛速度
改变一下训练函数用trainscg,trainlm要比traingdx快,再就是优化初始权阈值,这方面方法就多了,网上这方面东西比较多,搜下看吧!祝你成功

本文探讨了神经网络,特别是BP神经网络的收敛问题。BP网络的收敛速度通常较慢,可通过自适应学习率和改变训练函数来提高。相较于BP,SVM在找到全局最优解上更具优势。同时,介绍了人工神经网络的评价方法,包括BP模型的训练过程和权值调整。人工神经网络评价法涉及多个步骤,包括权值初始化、误差计算和网络结构优化。尽管神经网络有较好的动态性和非线性处理能力,但也存在陷入局部最小值和收敛速度慢的问题。
最低0.47元/天 解锁文章
371

被折叠的 条评论
为什么被折叠?



