构造N位格雷码(递归,面向对象)

问题:
递归打印出N位格雷码(相邻两个编码只有一位数字不同):
      问题化归为:现有前N位的格雷码,如何构造N+1位的格雷码?


解决方法:采用递归构造格雷码集和。

  递归出口:n = 1; 此时格雷码{0,1}
  N+1:N+1位的格雷码 = N位格雷码(顺序)+0,N位格雷码逆序+1(N位的格雷码顺序最后一个编码与逆序第一个编码是同一个编码,在此可以分别加0,1两个编码依旧只有一位不同)

public class GC{
    int[][] G;//
    int N;
    int SIZE;
    GC(int N){
        this.N = N;
        SIZE =(int)Math.pow(2,N);
        G = createG(G,N);
    }
    public int[][] createG(int[][] g,int N){//由原有的格雷码集合g造新的格雷码集G  递归构造
        if(N <1){
            return null;
        }
        if(N == 1){
            g = new int[2][1];
            g[0][0] = 0;
            g[1][0] = 1;
            return g;
        }
        g = createG(g,N-1);
        SIZE =(int)Math.pow(2,N);
        G = new int[SIZE][N];
        int n =N-1;//原格雷码的位数
        for(int i =0;i<SIZE/2;i++){//顺序
            for(int j=0;j<n;j++){
                G[i][j] = g[i][j];
            }
            G[i][N-1] = 0; 
        }
        for(int i = SIZE/2;i<SIZE;i++){//逆序
            for(int j=0;j<n;j++){
                G[i][j] = g[SIZE-1-i][j];
            }
            G[i][N-1] = 1; 
        }
        return G;
    }    
    public void show(){
        for(int i =0;i<SIZE;i++){
            for(int j=0;j<N;j++){
                System.out.print(G[i][j]+" ");
            }
            System.out.println();
        }
    }
    public static void main(String[] args){
        int N = new Integer(args[0]).intValue();
        GC G= new GC(N);
        G.show();
        return;
    }
}
View Code

转载于:https://www.cnblogs.com/yuanzhenliu/p/5322537.html

实验二 递归算法设计与应用 一. 实验目的和要求 1. 加深对递归算法的理解,并针对具体问题设计算法; 2. 分析算法的复杂性,寻找比较高效的算法,并实现。 3. 分析格雷码问题,并设计递归算法求解之。 二. 基本原理 递归是一种重要的程序设计方法。使用递归方法有时可使算法简洁明了,易于设计。 递归指算法自己调用自己, 有直接递归与间接递归两种。 递归方法用于解决一类满足递归关系的问题。即:对原问题的求解可转化为对其性质相同的子问题的求解。 三. 该类算法设计与实现的要点 1. 递归关系(特性):产生递归的基础。 当算法中某步骤要通过解性质相同的子问题实现时,该步骤用递归调用实现。 2. 递归出口(结束条件):确定递归的层数。 当子问题的规模充分小时可直接求解时,递归结束。 3. 参数设置:参数表示了原问题及其不同的子问题。 参数表示了子问题的大小和状态,以区别原问题以及不同层次的子问题。 4. 算法功能的设定:严格规定递归算法要解决什么样的问题。 算法功能的正确设定是保证递归过程正确进行的前提。 四. 实验内容――格雷码问题 1.问题描述 对于给定的正整数n,格雷码为满足如下条件的一个编码序列: (1) 序列由2n个编码组成,每个编码都是长度为n的二进制串。 (2) 序列中无相同的编码。 (3) 序列中置相邻的两个编码恰有一不同。 例如:n=2时的格雷码为:{00, 01, 11, 10}。 设计求格雷码递归算法并实现。 2. 具体要求(若在ACM平台上提交程序,必须按此要求)――平台上1769题 输入:输入的第一行是一个正整数m,表示测试例个数。接下来几行是m个测试例的数据,每个测试例的数据由一个正整数n组成。 输出:对于每个测试例n,输出2n个长度为n的格雷码。(为方便查看,在每个格雷码内,两个之间用一个空格隔开,如,00输出为:0 0)。两个测试例的输出数据之间用一个空行隔开,最后一个测试例后无空行。 3. 测试数据 输入:2 4 5 输出:0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 4. 设计与实现的提示 长度为n的格雷码是由长度为n-1的格雷码变换而成的。 可以用数组或字符串来存储格雷码。注意:对于较大的正整数n,用数组存储容易引起死机。 按照定义2n个长度为n的格雷码序列是不唯一的,若在ACM平台上提交程序,要求输出的编码序列与给出的范例具有相同的规律。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值