多模态
文章平均质量分 92
AI生成未来
这个作者很懒,什么都没留下…
展开
-
统一多模态大模型!PUMA:多粒度策略笑傲图像生成、编辑、修复、着色和条件图像生成和理解六大任务
解决的问题现有的多模态大模型(MLLMs)在视觉内容生成方面没有充分解决不同图像生成任务对粒度的需求差异,尤其是从文本到图像生成的多样性需求以及图像编辑中的精确可控性。提出的方案提出了一种名为PUMA(emPowering Unified MLLM with Multi-grAnular visual generation)的模型,旨在通过统一多粒度视觉特征作为MLLMs的输入和输出,优雅地解决不同任务的粒度需求。应用的技术。原创 2024-10-24 21:21:15 · 881 阅读 · 0 评论 -
矛盾之争,AI合成数据可以骗过大模型吗?中山大学联合上海AI Lab提出合成检测基准LOKI
引入了LOKI基准,以全面评估LMMs在区分合成数据上的表现。全面模态评估。收集了近期热门合成模型生成的高质量多模态数据,涵盖视频,图像,3D数据,文本,音频等多个模态。异构数据覆盖。数据集中包括28个不同模态的细致分类,包括有专业的卫星,医学等图像,哲学,文言文等文本作品,环境音,音乐等音频。多层次标注。基准包括了生成/真实标签,可用于判断题,多选题等基础问题设置。还包含了细粒度异常注释,可用于原因解释等探究LMMs在可解释合成数据检测方面的题目。多模态合成数据评测框架。原创 2024-10-20 22:31:25 · 1062 阅读 · 0 评论 -
详解大规模基础模型中的幻觉问题(幻觉检测、缓解、任务、数据集和评估指标)
在大规模基础模型中,幻觉输出的生成是一个关键挑战,特别是在高风险应用中。这种倾向可能影响模型的可靠性和准确性。原创 2024-10-11 08:27:28 · 1133 阅读 · 0 评论 -
从秒级到小时级:TikTok等发布首篇面向长视频理解的多模态大语言模型全面综述
文章链接:https://arxiv.org/pdf/2409.18938将大语言模型(LLMs)与视觉编码器的集成最近在视觉理解任务中显示出良好的性能,利用它们理解和生成类人文本的固有能力进行视觉推理。考虑到视觉数据的多样性,多模态大语言模型(MM-LLMs)在图像、短视频和长视频理解的模型设计和训练上存在差异。本论文集中讨论长视频理解与静态图像和短视频理解之间的显著差异和独特挑战。与静态图像不同,短视频包含具有空间和事件内时间信息的连续帧,而长视频则由多个事件组成,涉及事件之间和长期的时间信息。原创 2024-10-09 23:45:13 · 1540 阅读 · 0 评论
分享