Description
Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号。为了防止他人偷拷,这些资料都是加密过的,只能用Mato自己写的程序才能访问。Mato每天随机选一个区间[l,r],他今天就看编号在此区间内的这些资料。Mato有一个习惯,他总是从文件大小从小到大看资料。他先把要看的文件按编号顺序依次拷贝出来,再用他写的排序程序给文件大小排序。排序程序可以在1单位时间内交换2个相邻的文件(因为加密需要,不能随机访问)。Mato想要使文件交换次数最小,你能告诉他每天需要交换多少次吗?
Input
第一行一个正整数n,表示Mato的资料份数。
第二行由空格隔开的n个正整数,第i个表示编号为i的资料的大小。
第三行一个正整数q,表示Mato会看几天资料。
之后q行每行两个正整数l、r,表示Mato这天看[l,r]区间的文件。
Output
q行,每行一个正整数,表示Mato这天需要交换的次数。
Sample Input
4
1 4 2 3
2
1 2
2 4
1 4 2 3
2
1 2
2 4
Sample Output
0
2
2
HINT
Hint
n,q <= 50000
样例解释:第一天,Mato不需要交换
第二天,Mato可以把2号交换2次移到最后。
离线用莫队算法做,然后用树状数组维护。。。
对于莫队算法,对于很多个区间的询问,如果我们知道[l,r]可以快速算出[l,r+1],[l,r-1],[l+1,r],[l-1,r],就可以先讲询问按l排序,然后来做。
可是这样会T,我们考虑分块,将l分为√n块,如果是在块内进行转移,那么块内一共有√n个元素,所以有n个区间,所以在块内转移是O(n)的,
我们一共有√n个块,所以最多进行√n次块与块之间的转移,所以总的复杂度就是O(n√n)
1 #include<iostream> 2 #include<cstdlib> 3 #include<cmath> 4 #include<cstring> 5 #include<cstdio> 6 #include<algorithm> 7 #include<string> 8 #include<map> 9 #include<queue> 10 #include<vector> 11 #include<set> 12 #define inf 1000000000 13 #define maxn 50000+5 14 #define maxm 600+5 15 #define eps 1e-10 16 #define ll long long 17 #define for0(i,n) for(int i=0;i<=(n);i++) 18 #define for1(i,n) for(int i=1;i<=(n);i++) 19 #define for2(i,x,y) for(int i=(x);i<=(y);i++) 20 #define for3(i,x,y) for(int i=(x);i>=(y);i--) 21 #define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go) 22 using namespace std; 23 int read(){ 24 int x=0,f=1;char ch=getchar(); 25 while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} 26 while(ch>='0'&&ch<='9'){x=10*x+ch-'0';ch=getchar();} 27 return x*f; 28 } 29 struct rec{ 30 int l,r,id; 31 }c[maxn]; 32 ll n,m,cnt,tot,a[maxn],b[maxn],s[maxn],v[maxn],ans[maxn]; 33 bool cmp(rec x,rec y){ 34 return b[x.l]==b[y.l]?x.r<y.r:x.l<y.l; 35 } 36 bool cmp1(int x,int y){ 37 return a[x]<a[y]; 38 } 39 ll sum(int x){ 40 ll t=0; 41 for(;x;x-=x&(-x)) 42 t+=s[x]; 43 return t; 44 } 45 void add(int x,int y){ 46 for(;x<=tot;x+=x&(-x)) 47 s[x]+=y; 48 } 49 int main(){ 50 //freopen("input.txt","r",stdin); 51 //freopen("output.txt","w",stdout); 52 n=read(); 53 for1(i,n)a[i]=read(),b[i]=i; 54 sort(b+1,b+n+1,cmp1); 55 for1(i,n){ 56 if(i==1||(a[b[i]]!=a[b[i-1]]))tot++; 57 v[b[i]]=tot; 58 } 59 m=read();int block=sqrt(n); 60 for1(i,n)b[i]=(i-1)/block+1; 61 for1(i,m)c[i].l=read(),c[i].r=read(),c[i].id=i; 62 sort(c+1,c+m+1,cmp); 63 int l=1,r=0; 64 for1(i,m){ 65 while(r<c[i].r)cnt+=sum(tot)-sum(v[++r]),add(v[r],1); 66 while(r>c[i].r)cnt-=sum(tot)-sum(v[r]),add(v[r--],-1); 67 while(l<c[i].l)cnt-=sum(v[l]-1),add(v[l++],-1); 68 while(l>c[i].l)cnt+=sum(v[--l]-1),add(v[l],1); 69 ans[c[i].id]=cnt; 70 } 71 for1(i,m) 72 printf("%d\n",ans[i]); 73 return 0; 74 }