【pytorch】线性回归

构造一个PyTorch数据迭代器

def load_array(data_arrays, batch_size, is_train=True):  #@save
    """构造一个PyTorch数据迭代器"""
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)

batch_size = 10
data_iter = load_array((features, labels), batch_size)

Sequential类定义模型

from torch import nn
#第一个指定输入特征形状,即2,第二个指定输出特征形状为1
net = nn.Sequential(nn.Linear(2, 1))

初始化模型参数

通过net[0]选择网络中的第一个图层, 然后使用weight.data和bias.data方法访问参数
使用替换方法normal_和fill_来重写参数值

net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

定义损失函数

计算均方误差使用的是MSELoss类,也称为平方𝐿2范数]。 默认情况下,它返回所有样本损失的平均值

loss = nn.MSELoss()

定义优化算法

PyTorch在optim模块中实现了该算法的许多变种。 当我们(实例化一个SGD实例)时,我们要指定优化的参数 (可通过net.parameters()我们的模型中获得)以及优化算法所需的超参数字典

trainer = torch.optim.SGD(net.parameters(), lr=0.03)

训练

num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X) ,y)
        trainer.zero_grad()
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch {epoch + 1}, loss {l:f}')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小镇躺不平家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值