
算法、网址、信息
一个小白的学习之路
小镇躺不平家
被误解是表达者的宿命
展开
-
如何设置使PPT的画的图片导出变清晰
在这里插入图片描述](https://i-blog.csdnimg.cn/direct/2243859b453249dcb8cb616b96646149.png。第四步:另存PPT为图片:文件-另存为-保存类型-Png-保存。修改宽度和高度,比图片的宽高均大0.2cm刚刚好。首先看想要保存的图的尺寸:点击图形-格式-长宽。新建一个ppt-设计-幻灯片大小-自定义大小。选择导出当前的PPT,就可以得到清晰的图片了。按照图中设置:高级-原创 2024-10-30 10:14:07 · 1149 阅读 · 0 评论 -
可解释学习资料大全
资料汇总原创 2024-04-12 16:31:04 · 276 阅读 · 0 评论 -
如何使excel的图表实现自动更新月和周?
excel设置自动更新日期原创 2022-06-16 17:03:46 · 4998 阅读 · 0 评论 -
数据网站合集
建模数据查找合集原创 2022-07-26 15:16:18 · 355 阅读 · 0 评论 -
【合集】编程、考研、英语、考证自学网站合集
好用学习网址原创 2022-07-20 15:12:48 · 317 阅读 · 1 评论 -
Adam一种随机优化算法
1.什么是adam?adam的全称是adaptive moment estimation (适应性矩估计),是一种随机优化算法,高级的梯度下降优化算法,首次提出于Diederik P . Kingma和Jimmy Lei Ba的“ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION”论文中。......原创 2022-06-29 15:52:07 · 2495 阅读 · 0 评论 -
RMSprop优化算法
1.前提如图所示,梯度下降算法中,我们假设横轴代表W的方向,纵轴代表b的方向,我们想要减缓消除纵轴上的摆动,加快或保持横轴上的移动。此时我们可以采用RMSprop。2.RMSprop我们先看公式:dw表示在横轴方向上的变化,横轴上变化量较小,所以dw的二次方数值较小,则Sdw的数值较小;db表示纵轴方向上的变化,纵轴上变化量较大,所以db的二次方数值较大,则Sdb的数值较大。w被一个较小的数消除,w变大,b被一个较大的数相除,b变小如图所示,绿色代表RMSprop。这样就实现了减缓纵轴的震荡原创 2022-03-12 11:02:17 · 1223 阅读 · 0 评论 -
动量梯度下降法
当我们使用BGD或mini-batch算法时,我们会发现梯度的下降如上图所示是来回起伏的,这样在计算到最小值时仍然需要一定的时间,现在想要消除减缓这个波动,就用到了动量梯度下降法。一般β取0.9,这和我们之前提过的指数加权平均相同,用过去的平均值和现在的值共同决定。...原创 2022-03-12 10:03:07 · 525 阅读 · 0 评论 -
指数加权平均
β一般取0.9,我们现在计算V100,把式子全部代入得:可以看出V100为第100天的数值θ100加上它之前所有天的平均值,那到底是多少天的平均值呢?当算到0.9的十次方的时候,已经是0.35了,系数已经很小了。后面0.9的11.12等等次方可以忽略不计了,也就是说,其实是过去十天数据的平均值。...原创 2022-03-12 09:58:17 · 99 阅读 · 0 评论 -
mini-batch梯度下降法
1.什么是mini-batch把训练集分为数个子训练集,比如每个子训练集中包含1000个单个样本,子训练集就被成为mini-batch。2.损失函数的曲线我们发现出现了噪声,这些噪声产生的原因是,我们的子训练集是难以训练的,不可能一直下降,所以出现摆动正常的,我们需要决定的变量是训练集的大小。3.mini-batch大小的确定当训练集的大小等于整个训练集的个数m时,此时为BGD算法,它的噪声很小,能准确的找到最小值,但是数据量多时,它的运算时间太长,因为它要把所有的样本都训练一遍。相反,当训练原创 2022-03-11 17:09:27 · 739 阅读 · 0 评论 -
认识神经网络
1.结构从左到右依次是输入层、隐藏层、输出层神经网络的层数从隐藏层算起,输入层为第零层,所以上图是双层神经网络。隐藏层和输出层是带有参数的。2.输出计算隐藏层中的每个节点都进行这这种计算,先计算Z,再计算激活函数。例如下图中的隐藏中的四个节点:3.激活函数σ函数除非二元分类要用,其它场合几乎不用。tanh函数:不同层的激活函数可以不一样。tanh函数可以使用于几乎所有场合,它的效果比σ函数要好,但如果输出要求y是0或1这种二元分类情况时,应使用σ函数。ReLu函数:Z为正时,斜率为1原创 2022-03-05 10:14:58 · 708 阅读 · 0 评论 -
向量化消除显性for循环
利用python中的numpy实现向量化z=np.dot(a,b)例子:已知一个矩阵v,想做指数运算另矩阵u等于矩阵v的指数运算1. 非向量化的运算用for循环实现:一开始先把矩阵u初始化为0,然后利用for循环逐一计算。2.向量化的运算import numpy as npu=np.exp(v)向量化只需要一行代码实现,且计算速度明显提高。3.向量值函数np.log会逐个元素计算lognp.Abs会计算绝对值np.maximum计算所有元素中的最大值…...原创 2022-03-04 11:16:28 · 757 阅读 · 0 评论 -
损失函数(loss)与成本函数(cost)的区别
原创 2022-03-01 19:28:31 · 1367 阅读 · 0 评论 -
批量、随机、小批量梯度下降算法
http://t.csdn.cn/56uBQ转载 2022-03-01 11:25:10 · 130 阅读 · 0 评论 -
梯度下降算法(Gradient Descent, GD)
1.线性回归图中有很多点,横轴代表人口,数轴代表利润,现在我们想找到一条线,来线性拟合这些点的趋势,如下图所示:如何用梯度下降的算法来求线性回归呢,在求解之前我们需要了解损失函数:2.损失函数前一个y代表的是预测值,也就是红线上的点,后一个y代表的是真实值,也就是蓝色的点,式子就是预测值与真实值之差的平方和再累加的结果,例如:图中绿色圈出来的部分,在同一横坐标下,预测值对应的红线上的点,真实值是蓝色的点,它们之间有误差,多个点误差的平方再累加起来就是损失函数结果。θ0代表的就是图中红色直线的截距原创 2022-02-28 12:31:10 · 534 阅读 · 0 评论