【springboot】redis——高并发下缓存穿透问题

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/aiming66/article/details/88409856

缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。在高并发,流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞。
我们通过下面一个例子来说明:
demo源码访问:https://github.com/NerlCheng/springboot/tree/master/03-redis

在这里插入图片描述

我们用三个蓝色的框进行表示代码
1、在高并发的时候,比如突然有1W人次访问我们getAllOrder方法。
2、因为是高并发,此时执行效果类似于,1W次的访问同时进入getAllOrder方法。
3、此时,篮框1中的代码会执行一万次,如果此时缓存中没有数据,则返回的orderList为null。
4、继续执行篮框2中的代码,经过判断,这一万次的请求都是为符合null==orderlist的,则这一万次的请求都进入了if语句中,并执行篮框3中代码进行数据库查询,此时导致对数据库1万次的请求,为此很有可能导致数据库请求量过大而崩溃。

我们想要的效果:
当1W人次的请求是,第一个人查询redis缓存后,发现数据为null,进而这个人的请求去查询数据库,并将数据库写入到redis中,从而后面 的9999个人都是从redis缓存中查到相关的数据。

我们可以可以通过多线程进行模拟多并发的情景:
对代码进行微微的调整进行日志打印:

 @Override
    public List<tb_Order> getAllOrder1() {
// 高并发条件下,此处有问题:缓存穿透问题
        // 查询缓存
        List<tb_Order> orderList= (List<tb_Order>) redisTemplate.opsForValue().get("AllOrder");

        if (null ==orderList){
            // 缓存为空,查询一遍数据库
            System.out.println("查询数据库------------");
            orderList= orderMapper.getAllOrder();
            redisTemplate.opsForValue().set("AllOrder",orderList);
        }else{
            System.out.println("查询redis缓存------------");
        }
        return orderList;
    }

在这里插入图片描述
另外我们在controller中通过多线程调用:

 @GetMapping("/boot/getallorder1")
    public Object getAllOrder1(){
        //线程 该线程调用底层查询所有订单的方法
        Runnable runnable =new Runnable() {
            @Override
            public void run() {
                orderServiceInterface.getAllOrder1();
            }
        };
        
        // 多线程测试一下缓存穿透问题
        ExecutorService executorService = Executors.newFixedThreadPool(25);
        for (int i=0;i<10000;i++){
            executorService.submit(runnable);
        }
        
        return orderServiceInterface.getAllOrder1();
    }

启动程序后,我们可以通过日志可以看到如下结果:(执行前不要忘记将原来的缓存删除哦,否则依旧显示查询的缓存)
通过下面的图片可以看出来,在查询的时候,访问了很多次数据库,只有到了后面的时候才去查询缓存。
备注:之所以他们在后期去查询缓存了,是因为计算机执行慢的问题。(不要太在意这些细节)
在这里插入图片描述
在这里插入图片描述

为了解决上面的问题,我们有两种方案:

方法一:对getAllOrder方法加上锁:代码如下:

//对方法进行加锁,但是这样的性能不是很高
    @Override
    public synchronized List<tb_Order> getAllOrder2() {
        List<tb_Order> orderList= (List<tb_Order>) redisTemplate.opsForValue().get("AllOrder");

        if (null ==orderList){
            // 缓存为空,查询一遍数据库
            System.out.println("查询数据库------------");
            orderList= orderMapper.getAllOrder();
            redisTemplate.opsForValue().set("AllOrder",orderList);
        }else{
            System.out.println("查询redis缓存------------");
        }
        return orderList;
    }

方法二:双重检测

//加上双层检测锁
    @Override
    public List<tb_Order> getAllOrder3() {
        List<tb_Order> orderList= (List<tb_Order>) redisTemplate.opsForValue().get("AllOrder");

        // 双重检测锁
        if (null==orderList){
            synchronized (this){
                // 在redis中获取
                orderList= (List<tb_Order>) redisTemplate.opsForValue().get("AllOrder");
                if (null==orderList){
                    System.out.println("查询数据库------------");
                    orderList= orderMapper.getAllOrder();
                    redisTemplate.opsForValue().set("AllOrder",orderList);
                }else {
                    System.out.println("查询redis缓存------------");
                }
            }
        }else{
            System.out.println("查询redis缓存------------");
        }
        return orderList;
    }
展开阅读全文

没有更多推荐了,返回首页